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A  B R I E F  P R I M E R  I N  R E V E R B E R A T I O N  
M A P P I N G  

INTRODUCTION 

Reverberation mapping is the process of measuring the delays between the different light 
signals from active galactic nuclei and using that information to recover physically meaningful 
information about the nuclei’s structure. Even the most basic excursion into the field can be 
difficult without some basic knowledge, and so this guide has been prepared as an extensive 
rundown of the basics for the completely uninitiated. 

THE TASK 

 “Active Galactic Nuclei” (AGN’s) is a catch-all term for the core of galaxies that are actively 
producing noticeable amounts of light.  As far as we’re concerned, they have two distinct 
components: 

1. The Engine: A central black 
hole/accretion disk that spits out 
light at all wavelengths (the 
“continuum” signal); and 
 

2. The Dust Cloud: A hollow gas 
cloud “shell” of indeterminate 
shape that surrounds the engine. 
When the continuum signal 
excites this gas, spectral emission 
lines (the photometric signal) are 
produced. 

 
The AGN as a whole is often too small 
and distant to resolve these parts 
individually: instead we need to try and 
discern the structure of the AGN using 
only the continuum and photometric 
data. This concept is called 
reverberation mapping: using signal 
responses to try and resolve information 
about the shape and size of a complex 
structure. (Peterson & Horne, 2004) 
 

 
Simplified AGN Structure 

This is of practical interest for a very simple reason: It takes time for the light of the engine to 
reach the clouds. If we can measure this delay, we measure the AGN’s size, and by extension the 
AGN’s mass. 
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THE HURDLES 

Difficulty arises from the fact that light curves tend to have large seasonal gaps in observation, 
and a lack of consistent light curve shapes means that we have a hard time interpolating the 
behaviour while we have our back turned  

Even in the simple case of estimating the characteristic delay of an AGN, there are three main 
hurdles that make our life difficult, each of which exacerbate each-other: 

1: The Continuum Curve Isn’t Smooth or Predictable 

AGN signals are inherently random; there’s no established ‘shape’ that we can assume that the 
light curve will take. This is a big problem for us, because it makes it almost impossible to 
interpolate what the light curve is doing in between measurements. 

 

A Simulated AGN Light Curve (MacLeod C L, 2010) 

Even though the continuum curve isn’t easily predictable,  it does follow a well defined pattern 
of randomness. Studies have shown that the continuum curves of well-observed AGN’s match 
reasonably well with the “Damped Random Walk” (DRW), a stochastic process with bounded 
uncertainty.  

The DRW is similar to the traditional random walk, where the “size” and “direction” of each 
discrete step are randomized, but with an additional term dragging the signal back towards an 
equilibrium value: 

   

  
  

     ̅

  
    

Interpolation is still difficult, but it does tell us two crucial things about the signal: 

1. How signal uncertainty increases as we move away from a measurement; and 
2. How the signal autocorrelates with itself 

Additionally, the DRW is entirely defined by only three parameters: 

1. Its inherent variance,    
2. Its damping timescale,    
3. Its average, or “baseline”,  ̅ 

This is discussed more further on, in the “Damped Random Walk” section. 
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2: The Response Isn’t a Simple Delay 

Another issue complicating our life is that there isn’t a simple one to one relationship between 
spikes in the continuum and spikes in the photometric curves. We can see a single spike give a 
“blurred” response from a finite shell thickness, complications from reflections off the “back” 
and “sides” off the shell, and any number of other issues arising from the shape and structure of 
the physical system. 

We describe response of the photometric curves      with the transfer function  , the 

photometric response that each point on the continuum    generates: 

     ( )   (    )    ( ) 

    ( )  ∫  (    )    ( )
 

 

   

Actually measuring the transfer function requires intense observation of both the continuum 
and photometric curves, and so we instead have to take the messy step of making a reasonable 
guess as to what   might look like, and hope that it doesn’t skew our results too badly. 

3: Our Observations Are a Little Patchy 

In a perfect world, we’d have arbitrarily precise and continuous measurements of all of the 
signal curves. In practice, our measurements are discrete and often sparse, with significant 
uncertainties. Worst of all, many distance AGN’s will have half-year gaps with no measurement 
at all, simply because we couldn’t get a good look at them.  

 
Simulated DRW with Fake Seasonal Measurements 

This is the fundamental problem of AGN reverberation mapping: the characteristic delay is of a 
similar timescale to enormous gaps in the signals. To try and work around this, we need to make 
the best use of every measurement we have; combining data from every signal we have in a 
consistent way to maximize the reliability and precision of our output. 
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INTRODUCING THE DAMPED RANDOM WALK 

A major challenge in analysing AGN signals is that they don’t follow smooth, predictable light 
curves like some astronomical objects do; even if we have perfectly accurate measurements at 
two times, we can’t know exactly what the signal was doing between these points.  

However, we have found that this random behaviour follows certain probabilistic patterns, 
specifically those of the “damped random walk” (DRW), a stochastic (random) process 
(MacLeod C L, 2010) (Zu, Kochanek, Kozlowksi, & Udalski, 2013). By knowing how these 
random systems evolve, we can at the very least put some reasonable limits on what the light 
curve might have been doing in between measurements. 

THE RANDOM WALK 

To understand the damped random walk from scratch, it can be helpful to understand its more 
basic cousin: the regular “random walk”.  Imagine a person standing at position 0, who flips a 
coin. If the coin lands heads, they take a step left, if it lands tails, they take a step left. In this 
discrete case, this looks like: 

              [     ] 

This is an example of an “Ornstein Uhlenbeck (OU) process”, which covers any physical process 
in which the first order derivative has some random element    added to it. In this more 
general description, the random walk can be written defined by the stochastic differential 
equation: 

  

  
      

Where    is some continuously varying stochastic (random) variable with bounded variance: 

⟨(  ) ⟩    ⟨  ⟩    

The ‘Walk’ part of the name refers to the fact that, over each time increment   , the signal takes 
a ‘step’ up or down, causing the signal to meander diffusively away from its starting point: 

 
Ensemble of Random Walks 

 

You’ll note that, even though each individual “realisation” of the random walk is almost entirely 
unpredictable, the ensemble behaviour of arbitrarily many does follow a smooth distribution. In 
the random walk’s case, the Gaussian spread of the distribution increases to infinity (in a square 
root fashion, as it happens), and is unbounded. 
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THE DAMPED RANDOM WALK 

In well-observed AGN’s, we’ve found that their continuum light curves fit reasonably well with a 
close cousin of the random walk,  the “Damped Random Walk” (DRW): 

  

  
  

   ̅

  
     

The ‘damped’ part of the name refers to the negative proportional component  
 

  
.  The 

damping timescale,   , determines the timescale of the DRW as a whole. The figure below 
shows, from top to bottom,     1, 2 and 10. 

 

Simulated DRW’s at Increasing Timescales 

This has the effect of constraining the signals ‘walk’, so that, unlike the random walk, its 
variance plateaus out to a stable maximum: 

 
Ensemble Bheaviour of Many Damped 

Random Walks  
This mean/variation maps nicely to a time-varying Gaussian distribution, which, for the DRW, 
follows an exponential decay in the mean, and an exponential increase in the variance (square 
of standard deviation): 

 ( )   ̅  (    ̅)  
  
   ( )    

√     
  
  

Where    is the starting position of the walk, and    is the standard deviation that is plateaus 
out to. 
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The description of the standard deviation is sometimes called the structure function in 
reverberation mapping literature. This name can be a bit confusing, because it’s also used as the 
name for a few other unrelated concepts in signal analysis. 

Looking at the variance and mean functions, we can see that the DRW at large is entirely 
described by only three parameters: 

1. The average, or “baseline”,    ̅
2. The inherent variance,     
3. The damping timescale,     

When we have observation measurements for a DRW, we can make decent approximations 
about the baseline, but the remaining parameters are surprisingly hard to get accurate 
estimates of from sparse data. Rather than trying to calculate    and    from the data, it’s 
common to test many values numerically to find the best fit. 

CORRELATION & COVARIANCE 

Another useful fact about the DRW is that it has a well-defined autocorrelation function: 

 (  )  ⟨ ( ) (    )⟩   
 

|  |
   

In layman’s terms: nearby points in the DRW are likely to be similar, but become exponentially 
less so at further times. This is incredibly useful for a simple reason: knowing correlations gives 
us the covariance between any measurements we make: 

    ⟨    ⟩    
  

 
|     |

   

 
Numerical (Blue) & Theoretical (Orange) Autocorrelation Function of  

a Simulated DRW 

Equipped with this, we can assemble a covariance matrix for our data, and refine our 
measurements based on the surrounding datapoints.  

If you’re unfamiliar with correlation and covariance, check out the quick rundown in the 
accompanying document. 
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THE EVOLUTION OF SINGLE-POINT UNCERTAINTY 

Even though we’re often interested in reconstructing continuum curves from many data-points, 
we can actually arrive at a simple analytical solution for a single point curve. This is also a useful 
example for illustrating some of the underlying principles at play, and is worth going over for 
new-comers. 

If We Know the Baseline 
Recall that the probability distribution for a 
DRW starting at    at     is: 
 

 ( )   ̅  (    ̅) 
 

  
  

 ( )    
√     

  
  

 
Notice that this rearranges to: 
 

 ( )   ̅ (    
  
 )     

 
  
  

 
In the case where there’s (Gaussian) error in 
the initial measurement, we need to account 
for this variance in  ( ). Keeping in mind that 
uncorrelated variances stack add in 
quadrature, a measurement uncertainty of    
(one standard deviation) gives us: 
 

  ( )    
 (     

  
 )    

    
  
  

 

If We Don’t Know the Baseline 
If we don’t know the baseline, we need to add 
an additional variance: 
 

  ( )    
 (     

  
 )    

    
  
 

   ̅
 (    

  
 )

 

 

But, if we only have a single measurement, we 
can base our uncertainty in the baseline on the 
measurement error and the DRW’s inherent 
variance: 
 

  ̅
    

    
  

 
Which ends up giving us: 

  
 ( )    

 (     
 
 )

   
 (     

 
     

  
 ) 
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SIMULATING DRW’S 

As long as we’re forecasting forward, simulating a DRW is as straight forward as using a discrete 
Euler scheme with a random element: 

        
    ̅

  
     √

  

   

 

  
 

Where   is some random number, and    is the variance in the method used to generate it.  If Z 
is generated randomly with symmetrical probability distribution  ( ), then: 

  
  ⟨  ⟩  

∫  ( )   

 
  

∫  ( )
 

 
  

 

For example: 

Method    

Binary   

Square 
 

√ 
 

Gaussian   

 

e.g., for ‘Z’ being a Gaussian generated random number       (   ), and a known baseline of 

 ̅   : 

        
  
  

   √
  

   
   

   (  
  

  
)  √

  

   
   

In cases where we’re running a large number of simulations (e.g. brute forcing a continuum 
curve) it’s more efficient to calculate the bracketed terms ahead of time: 

            

  (  
  

  
)    √
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DIFFICULTIES WITH TRANSFER FUNCTIONS 

We describe the response of the photometric curves      with the transfer function  . This is 

the photometric response that each point on the continuum    generates: 

     ( )    (  )    (    )     

Such that the entire response is the convolution of the continuum with the transfer function: 

    ( )  ∫   (  )    (    )
 

 

    

This transfer function, along with the auto-correlation function of the continuum light curve, 
acts as a description of our entire understanding of the physical system. 

But what does this transfer function look like? Unfortunately, this doesn’t have a simple answer. 
In a perfect world, the response of the emission line signals from to the continuum would 
manifest as a simple, constant delay, i.e.: 

  ( )    (    )  (  )   (  ) 

Where    is the ‘characteristic delay’ of the system: the time taken for the continuum light to 
traverse the radius of the cavity: 

   
 

       
 

In practice, however, things are rarely so simple. Virtually every element of the AGN’s structure 
can introduce complications to this response.  

The Cloud Can Have Different Geometries 

We don’t know what shape the cloud might take. Even the simplest cases have massive 
differences in their corresponding transfer functions, and that’s before we take into account 
other complicating issues. The simplest case we might imagine is that of a thin, axisymmetric 
cloud in which each angular region gives off a 1-1 response immediately after the engine light 
reaches it. Even in this fairytail world, there’s huge differences based on exactly how that cloud 
is shaped. 

   
Uniform Disk (Edge-On) Uniform Disk (Face-On) Uniform Sphere 
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The Shell Might Self-Obscure 

Unless the shell perfectly fits on a thin-plane, there’s also the possibility that the nearer face will 
obscure the light from the farther face, limiting or entirely blocking the light from the “back” of 
the AGN. If the shell is opaque enough, this could even block light from the inside of the shell, 
making only  

 

The Shell Might Have Significant Thickness 

The above examples assume that each radial line excites one and only one patch of the shell. In 
practice, each line of sight from the engine outwards will pass through multiple layers, with 
outer layers giving weaker and more delayed responses: 

 

The Cloud Might Reflect Light Inside the Cavity 

Complicating things even further is the possibility that some of the continuum signal could be 
reflected off the cloud back into its interior, causing even further response: 

 

It’s easy to see how quickly a “blind” predictive model of the transfer function gets out of hand: 
even if we make a bold assumption bout the general behaviour, we still need to introduce any 
number of extra parameters in doing so.  It is technically possible to reconstruct a transfer 
function through observation of the two signals, but doing so reliably requires us to have 
reliable measurement data, the opposite of the situation that we’re dealing with. 
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A PRACTICAL SIMPLIFICATION 

In practice, we tend to just “guess” a simple shape for the basic transfer functions, and carry on 
from there. Many simple cases stick with a delta-function (1-1 response with a set delay) but Zu 
opts for the more advanced option of assuming that each transfer function is a “top-hat” 

 
Tophat Function 

The tophat function is pretty straightforward: a set area below a flat line of given width and 
position: 

  {
 

 
          

          

 

Note that, as in Zu’s papers, the function is sometimes described in terms of its start and end 
times instead of its start and width: 

      
        

HANDLING CORRELATIONS WITH TRANSFER FUNCTIONS 

One advantage of setting our foot down on a rough approximation like this is that we can use it 
to get correlations between different light curves, something that’s crucial to making use of as 
much data as possible. 

In general, the correlation between one point on the continuum and one point on a response 
curve is: 

⟨  (  )  (  )⟩  ∫ (     )  ⟨  ( 
 )  (  )⟩     

While the correlation between two points on the same response curve is: 

⟨  (  )  (  )⟩  ∫∫  (     )  (      )  ⟨  ( 
 )  ( 

  )⟩         

And the correlation between two points on different responses (for example ‘a’ and ‘b’ is): 

⟨  (  )  (  )⟩  ∫∫  (     )  (      )  ⟨  ( 
 )  ( 

  )⟩         

  



A Brief Primer In Reverberation Mapping 
2019 

 

 

13 

Continuum-Line Covariance 

Given that we now have a fixed description of  , and our knowledge of the DRW gives us the 
continuum-continuum function ⟨  ( )  ( 

  )⟩. Here, we presents Zu’s results for these 
correlations, assuming that the transfer function is a tophat function of height ‘h’ and width ‘w’, 
i.e.: 

 (  )  {
           
          

 

Firstly, the covariance between the continuum at time ‘  ’ and a response line    at time ‘  ’, i.e. 

with a time difference of          

⟨  (  )  (  )⟩    
   

  

{
 
 
 

 
 
    ( 

     

  
)     (

   (    )

  
)      

     (
   (    )

  
)     ( 

     

  
)           

   ( 
   (    )

  
)     ( 

     

  
)        

 

For the sake of simplicity, Zu defines: 

      (    ) 
         

Such that this may be more compactly written: 

⟨  (  )  (  )⟩    
   

  

{
  
 

  
    ( 

  
  

)     (
  
  

)      

     (
  
  

)     ( 
  
  

)           

   ( 
  
  

)     ( 
  
  

)        

 

From: (Zu, Kochanek, & Peterson, An Alternative Approach to Measuring Reverberation 
Lags in Active Galactic Nuclei, 2011) 

   



A Brief Primer In Reverberation Mapping 
2019 

 

 

14 

Line-Line Covariance 

We can similarly arrive at an expression for the covariance between two respone lines,   ( ) and 
  ( ) (we’ve used subscripts 1 and 2 to represent any arbitrary pair of response lines here).  

Note: There’s a good chance that these equations as given by Zu have some minor errors in 
them. There are some contradictory definitions. They’re presented here for completeness, 
but the reader should be aware that they may have inherited some errors. 

As before, we assume that the transfer function between the continuum and the lines are tophat 
functions, but set      . If this isn’t the case, the symmetry of covariance means you can 
switch the two around so that it is. 

Zu first sets up some shorthand variables: 

      (          )  
       (          ) 
       (       ) 

      (    (      )) 

And gives the covariance as: 

⟨  (  )  (  )⟩    
   

      (   ( 
|  |

  
)     ( 

|  |

  
)     ( 

|   |

  
)     ( 

|   |

  
)   ) 

Where ‘z’ is a piecewise component: 

  

{
 
 

 
  

  
  

        

           

  
  
  

        

             

 

Notice that this also works as the covariance of response curve with itself, we just need to set: 

                           
To get: 

        
         
       
        

⟨  (  )  (  )⟩    
   

    (   ( 
|  |

  
)     ( 

|    |

  
)   ) 

 

These covariances are crucial to the process of reverberation mapping, as they’re used to 
populate the covariance matrix. This matrix (which shows up in the curve recovery section) 
encodes all of our information and assumptions about the system, and describes how our 
various measurements relate to one another. 

Note: The above result is not given by Zu, but an extension on the (possibly erroneous) 
prior equations. 

From: (Zu, Kochanek, & Peterson, An Alternative Approach to Measuring Reverberation 
Lags in Active Galactic Nuclei, 2011) 
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CORRELATION FUNCTIONS & CURVE RECOVERY FROM DISCRETE 
DATA 

THE DISCRETE CORRELATION FUNCTION 

Calculating the correlation function of two datasets can be a bit tricky when they’re irregularly 
or sparsely sampled. We might interpolate and get the correlation by integration or FFT, but: 

“When, as is usually the case, the fluctuation power spectrum has substantial amplitude at 
frequencies above the mean sampling rate, interpolation is dangerous” 

- (Edelson & Krolik, 1988) 

i.e. interpolation can give us a false confidence in misleading results if the timescales of 
sampling is larger than the delay we’re trying to measure. A more conservative approach is the 
discrete cross correlation function, or ‘DCF’, which makes no assumptions at all about the 
‘shape’ of the underlying signals, or of the relationship/transfer between them. In this way, it’s 
probably the most general, though not particularly precise, way of approaching the sparse data 
correlation problem. 

The approach is pretty straightforward: 

1. Divide your timeline into ‘bins’ of arbitrary (but usually regular) size  

2. Choose a point on signal x. Run through all the points in signal y. If the time between the 

two points is inside a particular bin’s range, add (    ̅)(    ̅) to that bin’s “score” 

3. Repeat for all points in signal 1 

4. Average the scores for each bin, giving a measure of covariance 

5. Divide by signal variability to get the correlation 

Or, in math-talk: 

   ∑(    ̅)(    ̅)

  

       
  [       ] 

   ∑ 

  

       
  [       ] 

   
  

      
 

With normal discrete calculations of the signal averages and standard deviations. 

The advantage of the DCF is its generality: it assumes nothing. However, this is also its biggest 
shortfall: it fails to make the best use of our understanding of the underlying system that has 
produced the signals. Useful for an initial reconnaissance, but not suitable for analysis of 
systems where we have a better grasp of the physics at hand. 
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CRUDE UNCORRELATED DRW INTERPOLATION 

Recall that we had a description of how a DRW’s ensemble distribution evolves near a single 
measurement point.  

When we have multiple points, we can crudely stitch these together into a conservative estimate 
of the curve as a whole. First, we estimate the signal baseline with the inverse variance 
weighted average: 

 ̅  (∑
 

    
    

 

 

)

  

∑
  

    
    

 

 

   ̅
  (∑

 

    
    

 

 

)

  

 

And then use these to assemble the distributions about each point. For each measurement,   , at 
time   , the probability distribution at time         looks like: 

  ( )   ̅ (    
  
 )     

 
  
  

  
 ( )    

 (     
  
 )      

    
  
    ̅

 (    
  
 )

 

 

We then combine these estimates using normal, uncorrelated Gaussian methods: 

  ( )  (∑
 

  
 

 

)

  

   ( )  (∑
 

  
 

 

)

  

∑
  

  
 

 

 

Provided we’re only looking at data from a DRW curve, this gives a quick and easy estimate of 
the distribution that is conservatively imprecise. 

 

Crude Interpolation for Fake Data 
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A MORE ROBUST METHOD FROM RYBICKI AND ZU 

The DCF is useful in how little it assumes about the signal, but becomes a disadvantage in cases 
where we do have a bit more knowledge. (Rybicki & Press, 1992) presents a method that uses 
our understanding of the DRW nature of the AGN continuum to not only try and determine the 
correlation function, but to recover the underlying light curves.  

CONSTRUCTING THE CONTINUUM CURVE 

Rybicki presents a for using known, or at least assumed, parameters for the DRW to try and 
recover the signal’s behavior in between our measurements, a technique that can be used as a 
stepping stone to recover the correlation functions between the continuum and response 
signals without knowing these parameters. 

First, consider the observed signal, ‘y’, to be the sum of the true signal, ‘s’, and some random 
noise signal, ‘n’: 

       ̅ 

With our best guess for the signal at any point being some linear sum of the measurements 
(after subtracting away the average): 

   ∑    
 

 

 

If the measurements are discrete, the two components of the observation have their own 
covariance matrices: 

     

The elements of S are the covariances between 
our different measurements: 
 

    ⟨     ⟩ 

 
If, for example, we’re looking only at a DRW, 
the matrix ‘S’ would have elements: 
 

    
     ( 

|     
 |

  
) 

 
This produces a characteristic “exponential 
covariance matrix” that has some conveniently 
efficient methods of inverting (right).  
 
 

 
Very Large Exponential Covariance Matrix 

 
Provided we’ve used a known transfer function to find the covariances between points that 
aren’t the continuum, we can populate elements that don’t correspond to continuum-continuum 
measurement pairings. In this way, the ‘S’ matrix encodes all of our knowledge about the 
underlying physical system. 
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Meanwhile the (uncorrelated) measurement errors would give a diagonal matrix with: 

       

Under these conditions, our best estimate for the baseline is the normal result from Gaussian 
statistics: 

 ̅  
      

      
 

We need to subtract this away from the data: 

       ̅ 

The argument then goes that, in estimating the signal at some time ‘s(t)’, we should weight each 
value       ̅ by: 

 The inverse of variance of that measurement; and 

 How strongly the thing we’re estimating correlates with the measurement  

If  ⃗ ( ) is a vector of covariance between the point we’re estimating and the signal at the 
measurements: 

 ⃗    
 

(

  
 

   ( 
|    |

  
)

   ( 
|    |

  
)

 )

  
 

 

We can get that kind of weighting with a best estimate: 

 ( )   ⃗ ( )        

Alternately written:  

 ( )   ⃗ ( )     (   ̅)   ̅ 

As for the uncertainty in this estimate, it’s found by finding the component of the variance that 
is orthogonal (can’t be accounted for) with the data: 

   
  ⟨  

 ⟩   ⃗      ⃗  

Which, because ⟨  
 ⟩    

 , means: 

      
   ⃗      ⃗  

 

From: (William, Rybicki, & Hewitt, 1992) 
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EXTENDING TO MULTIPLE POINTS 

To summarise Rybicki’s method for a single point: 

 ( )   ⃗ ( )     (   ̅)   ̅ 

   
 ( )  ⟨  

 ⟩   ⃗      ⃗  

Where: 

 ̅  
      

      
 

You may notice that all of these are linear operations, and we can pretty easily generalize this to 
estimate multiple points at once.  

 Instead of   
⃗⃗⃗⃗  being a vector, instead make it a matrix,    , the signal covariance of the 

curve-data. We do this by placing multiple covariance “vectors” side by side as columns.  

 Similarly, ⟨  
 ⟩ needs to be replaced with a matrix-like object,    , constructed the same 

as the normal ‘S’ matrix from earlier, but using the curve-times instead of the data-times 

 For clarity, we’ll rename the old covariance matrices with subscripts ‘dd’ to indicate 
data-data covariance matrices. 

So, if we want to estimate an entire curve at once, we’d use: 

 ⃗     
    

  (   ̅)  

   
         

     
        

Where: 

            

Notice that this returns the mean and uncertainty of the stochastic component of the signal, ‘s’, 
not the signal itself, ‘y’. To recover that, you will need to add the baseline back on: 

       ̅ 

USING RYBICKI’S METHOD TO REFINE DATA 

A meaningful special case is when the signal points we’re trying to predict are the 
measurements, i.e. when we’re trying to refine the measurements. In this case, we have: 

              

Giving: 

 ⃗      (   ̅)   ̅ 
   

           

Where we’ve used the fact that, in this instance,     . 
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AN EXTENSION TO NON-CONSTANT BASELINES 

One limitation of the method described is that it assumes that the noise and DRW of the 
underlying signal are varying about a fixed average,  ̅, and doesn’t allow for any more 
complicated behaviour of the baseline. A more general extension that accounts for this is 
presented by Rybicki, and adopted by Zu in their Javelin program, and will be summarized here.  

First, we describe the observed signal as being the superposition of the natural variations, the 
noise, and a linear combination of some other set of known (or guessed) basis functions: 

 ( )   ( )   ( )  ∑    ( ) 

Now we’ll introduce a matrix, L, which encodes these basis functions. For example, suppose we 
assume the baseline to behave quadratically in time, and we’re analysing only one curve, i.e.: 

∑    ( )            
  

The L matrix would look like: 

   [

     
         

  
   

   
   

  
] 

If we’ve got data from more than one curve, we staple together matrices like above, but and 
leave the remaining elements blank. For example, suppose we have two curves, where  we’re 
assuming linear baseline behaviour for the first and constant for the second. In this case, our L 
matrix looks like: 

   [
     
       
     

] 

First, as before, we combine the DRW and noise covariances into a single matrix: 

      

Then use this to estimate the linear coefficients of the baseline: 

 ̂  (      )          

Alternately written as: 

 ̂      
      

Where we’ve define the covariance matrix of these coefficients,   : 

   (      )   

⟨  ̂ ⟩     

You’ll notice that, if we have ‘L’ just be a vector of 1’s, this is the same average estimate from the 
simple method.   
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Meanwhile, the estimated light curve is given by the same method as before, just subtracting 
away the moving baseline instead of a fixed average: 

 ̂      (    ̂) 

With variance: 

⟨  ̂ ⟩   ⃗   ⃗      

Where    is the portion of the covariance matrix that is orthogonal (i.e. can’t be accounted for) 
by the moving baseline. 

  
              

     

As presented, this method is used to refine the measurements at the times we observe them, 
however we can pretty easily extend this to generate any arbitrary time series in the same way 
as before: 

 ⃗     
    

  (    ̂) 

   
         

     
        

Where: 

            

The uncertainties in these estimates come from the diagonal elements of the matrix    
 . 

Notice that, as with the other methods, this returns the mean and uncertainty of the stochastic 
component of the signal, ‘s’, not the signal itself, ‘y’. To recover that, you will need to add the 
baseline evolution back in: 

      ∑    ( ) 

This is only really useful as a diagnostic to compare the predictions directly to the observation. 

From: (Zu, Kochanek, & Peterson, An Alternative Approach to Measuring Reverberation 
Lags in Active Galactic Nuclei, 2011) 
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USING RYBICKI & ZU’S METHODS TO RECOVER CORRELATION FUNCTIONS 

Looking at the continuum reconstruction method, we can see that we encode all of our model 
parameters in the ‘S’ matrix. The continuum-continuum elements require us to known    and 
  , and all of the other  elements require that we know something about the transfer function.  

We can use some principles of Gaussian statistics to say that the probability of a particular 
signal ‘s’ being true is proportional to: 

 ( )  | | 
 
     ( 

 

 
      ) 

And, similarly, the probability of a particular noise line, n, being true is: 

 ( )  | | 
 
    ( 

 

 
      ) 

Where   and N are the covariance matrices of s and n. Thus, the probability of a particular 
signal realization is: 

 ( |      )  |  | 
 
    ( 

 

 
[             ]) 

But we don’t care about a “particular” realisation, we care about how well the ensemble of 
possible realisation implied by a particular set of parameters is, i.e. ,marginalizing over the 
variances we calculated in the previous section. Doing so gives us the probability that a 
particular set of parameters corresponds to our measurements:  

 ( | )  |  | 
 
    ( 

 

 
[   (       )        

          
   ]) 

So, we have a single number telling us how good of a job a given choice of parameters, ‘p’, does 
at describing our measurements, ‘y’. From here, we marginalize over the linear parameters (i.e. 
q over the interval   )  to arrive at: 

 ( | )  |   | 
 
 |      | 

 
    ( 

 

 
    

   ) 

Alternately written as: 

 ( | )    
   ( 

 
     

   )

√| |  |      |
 

This gives us an engine for turning a set of model parameters, i.e. the damping timescale, natural 
DRW variance and the transfer function width and characteristic delay. From here, trying to get 
the best fits for these parameters becomes a numerical optimization problem, which Zu 
approaches with a mix of Nelder-Mead and grid-interpolation. 

If we trial a sufficient number of datapoints, we then also have the option of marginalizing over 
the parameters we’re not concerned about to build up a decent estimate of the correlation 
function as a whole. 

From: (Zu, Kochanek, & Peterson, An Alternative Approach to Measuring Reverberation 
Lags in Active Galactic Nuclei, 2011) 
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VALDIATION OF CURVE GENERATION METHODS 

Before moving forward to estimating correlation functions and estimating delays, it’s 
worthwhile taking a moment to see how well these continuum methods actually work at 
recovering light curves from data. 

As a part of the attached python program is a monte-carlo module that generates many DRW’s 
of known parameters to “brute force” the distribution of possible light curves for a given set of 
data. This process is unreasonably expensive to use in general, but does give us a reliable curve 
to validate our faster methods against.  This section will outline how the Monte Carlo data is 
generated, and use this data to quickly compare the curve estimate models. 

GENERATING MONTE-CARLO CURVES 

The Monte Carlo curves that we’re comparing against were generated only for DRW’s of a 
constant baseline, using the following process.: 

Beginning with some set of (faked) signal measurements with known times and uncertainties, 
and set DRW parameters   and   : 

1. Generate a single DRW realization 
2. Offset that curve by some baseline (see further down) 
3. Evaluate the    score of the realisation against the data 
4. Generate a random number ‘r’ on (   ) 

5. If      ( 
 

 
  ), add keep that realization to the ensemble, else discard 

6. Repeat steps 1-5 until a sufficiently large ensemble has been built up 
7. Calculate the evolving mean and variance of the ensemble and save 

The    score is generated by: 

   ∑(
    (  )

  
)

 

 

 

Where    is the ith signal measurement, at time    and with (1 standard deviation) uncertainty   , 
and  (  ) is the DRW value at that time.  

As for estimating the baseline, three methods were used: 

1. Setting  ̅   , representing cases where the baseline was already known beforehand 
2. Generating a purely random value for  ̅  from a sufficiently broad range 

3. Using the value that minimizes the    for that particular realization, i.e. using: 

 ̅  

∑
  

  
  

∑
 
  

  

 

As it happens, the last two of these generate virtually identical results, with the second being 
much faster in a computational sense due to each realization maximizing its chance of being 
used in the final ensemble. 
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VALIDATING ESTIMATE MODELS 

Now that we have (computational expensive) numerical data, we have some result to compare 
our data to. Note that the following validation extends only to DRW’s of constant baselines 
(exponential covariance matrices) 

For a Single Datpoint 

Before even considering more complicated cases, it’s worth validating against the simplest case: 
a single datapoint, the behaviour for which we have analytical models for (the ‘singlepoint’ 
model). When we test the Rybicki method against these, we can see a perfect agreement 
between all three models when the baseline is fixed (right), i.e. all the DRW’s in the monte carlo 
ensemble are generated with  ̅   , but some disagreement arises when this isn’t the case (left).  

  
DRW Curve Recovery Methods for 

Unknown Baseline  
DRW Curve Recovery Methods for Known  

Baseline  
 

The Rybicki method over estimates the confidence in the baseline, thereby under-estimating the 
variance in the overall distribution. 

Fortunately, this issue disappears once we 
have enough data to properly constrain 
the measurement: with even two 
datapoints, the rybicki method comes into 
close agreement with the monte carlo 
curves.  
 
This example also illustrates the use of the 
singlepoint method as a quick and cheap 
estimate of the outside behaviour of the 
curve, sacrificing resolution for ease of 
calculation.  

 
DRW Curve Recovery Methods For Two 

Datapoints 
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The more data we have available, the better the Rybicki and Zu methods perform. As shown 
below, the robust method matches almost perfectly to the monte-carlo results for multiple 
datapoints, drastically outperforming any cruder alternatives. 

 
DRW Curve Recovery Methods For Multiple Datapoints 

Something that has to be considered in the Rybicki/Zu methods is the affect of different baseline 
basis functions: changing the elements of the L matrix can drastically alter the final curve 
distribution. Particular care should be taken not to overfit the data with an overly complex 
model, as this may obscure the random variations that we’re trying to isolate. 

 
DRW Curve Recovery with Multiple Baseline Behaviour Types 
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