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UNCORRELATED DATA & SOME BASIC DEFINITIONS 

Before we begin looking at correlation, it’s worth re-visiting how uncorrelated data behaves to 
get a general understanding of how uncertainties interact with one another before complicated 
stuff. 

MEAN, VARIANCE AND EXPECTED VALUE 

Even if we aren’t looking at normal distributions, it’s common to summarise probability 
distributions in terms of their mean/average/expectation value and their variance: 

    ̅  ⟨ ⟩  ∫  ( )      
  ⟨(   ̅) ⟩     ( )  ∫   ( )    

Strictly speaking, the standard deviation,  , should only really be used when we know that 
Gaussian distributions are at play, but we’ll use it anyway for simplicity’s sake. 

The variance is a measure of how broadly the variable tends to sway about its average. A useful 
thing to remember about these values is how they scale when their variable is multiplied by 
some constant: 

⟨   ⟩   ⟨ ⟩     
       

  

An important thing to keep in mind is that variance is based on the square of 
differences/deviation. This idea of measuring variation in terms of squares shows up 
consistently: you can see it in the least squares method of model fitting, the R2 and    values in 
statistics, and the standard deviation of Gaussian distributions in probability. 

VARIANCES IN AVERAGES 

Suppose we have two imprecise measurements,    and   , both of the same variable, and we’re 
trying to get a best guess for what that variable is. Obviously, we’d do this by averaging the two 
measurements somehow, but where exactly do the uncertainties come into play? 
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Each measurement is effectively a probability distribution for the true value, so it’s pretty 
obvious that we can combine them by simply multiplying: 

 ( ̅   )   (    )   (    ) 

 

If we go through the actual maths on this, we find that our combined distribution has 
properties: 

 ̅  
(  
      

   )

(  
    

 )
   ̅  √

  
   

 

(  
    

 )
 

This looks a little messy, but fortunately it can be re-written in a much neater (and much more 
general) way: 

 ̅

  ̅
  

  

  
  

  

  
  

 

  ̅
  

 

  
  

 

  
  

Looking at this, we can notice a pattern: 

 The average is the inverse-variance weighted sum 

 The inverse variance in the average is the sum of inverse variances 

We might call the inverse variance, 
 

   
, something along the lines of “reliability”, in which case 

we could say that we take the “reliability” weighted average, and that the “reliabilities” of the 
measurements add together.  

It turns out that this is actually a general statement for any number of measurements: 

 ̅

  ̅
  ∑

  

  
 

 

 
 

  ̅
  ∑

 

  
 

 

 

This concept of weighting by the inverse variance shows up even in correlated data, though the 
specifics become a little more complicated.   
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VARIANCES IN SUMS 

Suppose we’ve got two variables, ‘x’ and ‘y’, with probability distributions ‘X’ and ‘Y’. Now 
suppose we want to add them together to get ‘z’, with distribution ‘Z’: 

      

Intuitively, it makes sense that the average of the sum is the sum of the averages: 

 ̅   ̅   ̅ 

But the variance in z isn’t quite so straightforward. First notice that the actual probability 
distribution of ‘Z’ looks like: 

 (   )  ∫ (   )   (     )    

You may notice this as being a convolution of the two probability distributions: 

 (   )   (   )   (   ) 

In the specific case of normal distributions, this convolution has a pretty simple solution.  First, 
we remember that convolution in the real domain is multiplication in the fourier domain: 

 , (   )   (   )-   , (   )-   , (   )- 

And that the variance of a normal distribution is inversely proportional to that of its fourier 
transform: 

   
 

  
 

And use what we know about multiplication of two normal distributions to say that: 

 

  , -
  

 

  , -
  

 

  , -
  

And revert back to the real domain: 

  
    

    
  

Or, in the simplest terms: The variance of a sum is the sum of the variances. More generally: 

   ∑  
 

 

 

This ends up being the case even when we’re not looking at normal distributions: variances 
stack linearly in sums.  
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Speaking even more generally, we can extend this to include any linear sum. If we have some 
linear sum: 

  ∑     

Then the variance is found by: 

   ( )  ∑  
    (  )

 

 

Using the inverse-variance weighting, we can actually use this to recover our formula for the 
variance of an average. Begin with the (normalized) inverse variance weighting: 

   
(

 
   (  )

)

∑ (
 

   (  )
) 

 

And using this with our formula for the variance of a linear sum: 

   ( )  ∑

(

 
 (

 
   (  )

)

∑ (
 

   (  )
) 
)

 
 

 

   (  )
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   (  )
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   (  )
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Which is exactly what we had before.  
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SUMMARY 

A random variable’s probability distribution is typically summarized by its average and is 
variance: 

 ̅  ⟨ ⟩    ( )  ⟨(   ̅) ⟩ 

The square root of the variance gives the standard deviation if the variable’s distribution is 
Gaussian: 

      ( ) 

Averages scale linearly with the variable, while variance scales quadratically: 

   ̅̅ ̅̅ ̅̅     ̅    (  )        ( ) 

If variables are added together, their variances add: 

   .∑    /  ∑  
    (  )

 

 

When averaging, we weight by the inverse of variance: 

*  +̅̅ ̅̅ ̅  ∑
  

   (  )
    ( ̅)  [∑

 

   (  )
]
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INTRODUCING CORRELATION & COVARIANCE WITH 
CONTINUOUS SIGNALS 

Though terms like “correlation” and “covariance” are very general terms, it’s easiest to get a 
handle on what they mean by looking at how they’re used in the context of continuous signals. 
Though the underlying definitions given here are general, we’ll spend this section looking at 
some more specific versions of the concepts. 

COVARIANCE 

Suppose we have two signals, ‘x(t)’ and ‘y(t)’, and we’re interested in how much they “line up”, 
i.e. how much the peaks and troughs of one signal line up with the peaks and troughs of the 
other. To describe this, we introduce the covariance between the signals. Strictly speaking, this 
is defined as: 

     (   )  ⟨(   ̅)(   ̅)⟩ 

But, for continuous variables in time, it’s a bit easier to think of it as: 

     (   )  
 

  
∫( ( )   ̅)  ( ( )   ̅)    

It’s clear that this measures how much the signals move in-sync with one another:  

 If the ups line up with ups and the downs with downs, the signals are in-phase and the 
covariance is positive 

 If the ups line up with the downs and vice-versa, the signals are anti-phase and the 
covariance is negative 

 If the ups and downs don’t line up in any consistent pattern at all, the covariance is zero 

 
Peak-Peak: Positive Covariance 

 
Peak-Trough: Negative Covariance 

 
No Pattern: Zero Covariance 

This bares a close resemblance to the “inner product” that shows up in least-squares function 
fitting, something that is far from a coincidence.  
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You may also notice that covariance doesn’t assume anything about the shape of the signals, for 
example, the two signals below have a positive covariance, even though they aren’t linearly 
dependant. 

 

It’s worth noting that a signal’s covariance with itself is just its normal variance: 

     (   )     ( ) 

This idea plays into the concept of a covariance matrix, a core feature of correlation in discrete 
data that discussed further on. 

CORRELATION 

You might notice that the definitions of covariance mean that the value itself isn’t unitless: it 
scales in proportion to the signal magnitude, i.e.: 

     (     )         (   ) 

With this in mind, it might be worth our time to use a signal’s variance as a sort of measure of its 
“width”, and use this to normalize the covariance. Doing so gives us the correlation between 
two signals: 

    (   )      
     (   )

√   ( )     ( )
 
     (   )

    
 

Covariance is useful in that it gives an intuitive description of how the signals relate to 
eachother. Correlation is a scale from -1 to 1, with -1 being perfect anti-phase correlation, 0 
being no correlation at all, and 1 being perfect correlation.  

In this way, correlation and covariance have a very simple relationship: 

     (   )          
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THE CORRELATION FUNCTION 

Consider the following two signals: 

 

Even at a first glance, it’s obvious that there’s a relationship between them: one is just a slightly 
shifted copy of the other. However, if we were to calculate the covariance between them, we’d 
find that they have zero correlation. 

This is where the correlation function comes in: we need a description of how correlation 
varies as we shift one of the functions left or right: 

   ( )        ( ( )  (   )) 

 
     ( ( )  (   ))

√  ( )   ( )
 

 
 

    

 

  
∫( ( )   ̅)  ( ( )   ̅)    

As you can see in the third description, the correlation function is mathematically very similar to 
the convolution of two functions, though the significance of the two ideas is very separate. 

Staying with the above example, we find that their correlation function looks like this: 

 

The correlation function has a lot of physical significance: measuring it can help us figure out if a 
signal is responding to another one, and if so how much of a delay there is between the effect 
and response. In the above example, the correlation function reaches a peak at         , which 
tells us that the first signal creates a response in the second after a delay time of 0.401. 

When we take a correlation function of a signal with itself, we call that its autocorrelation 
function. The autocorrelation function is often used in random signals, where it tells us how 
closely related nearby points in the signal are. 
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SUMMARY 

The covariance between two variables/signals is a measure of how much their variability syncs 
up: 

     (   )  ⟨(   ̅)(   ̅)⟩  
 

  
∫( ( )   ̅)( ( )   ̅)    

If this is positive, an increase in one tends to line up with an increase in the other. If it is 
negative, an increase in one usually means a decrease in the other. If its zero, there’s no 
consistent relationship between the two. 

A variables covariance with itself is its regular variance: 

     (   )     ( ) 

Correlation is the covariance normalized to the domain ,    -, found by dividing the 
covariance by the standard deviation/square root variances of the signals: 

    (   )      
     (   )

√   ( )     ( )
 
     (   )

    
 

The correlation function is a function describing how the correlation varies as we shift the 
signals left/right: 

   ( )        ( ( )  (   )) 

 
     ( ( )  (   ))

√  ( )   ( )
 

 
 

    

 

  
∫( ( )   ̅)  ( ( )   ̅)    

The correlation function acts as a measure of how response vs delay between two signals. 
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INTRODUCING THE COVARIANCE MATRIX 

Suppose we have two random variables, ‘x’ and ‘y’, that are added together: 

      

If they’re uncorrelated, the variances just add together: 

   (   )     ( )     ( ) 

But what if the two variables are (positively) correlated? If ‘x’ is big, ‘y’ is likely to also be big, 
making it easier for ‘z’ to swing above its mean value. The same thing can be said for ‘x’ and ‘y’ 
being below average, meaning that ‘z’ will have a higher variance than if ’x’ and ‘y’ were not 
correlated. 

It turns out that the variance of this correlated sum adds twice the covariance: 

   (   )     ( )     ( )        (   ) 

Now, notice that this can be written in a slightly different way: 

   (   )       (   )       (   ) 
      (   )       (   ) 

In this shape, the variance almost looks like a linear system. We might then choose to write this 
system like: 

   (   )  ,  - [
     (   )      (   )

     (   )      (   )
] 0
 
 
1  

Following along with this idea for a general set of variables, *  +, we can define a “covariance 
matrix”, C: 

         (     )          

In this matrix, we’ve summarized everything about the variance and correlation of the system: 

  [
  
         

         
  

   

] 

Why is this useful to us? Well, suppose we have some value which is a linear sum of the 
variables: 

  ∑    
 

 

Its variance can be found right away using the covariance matrix and a little algebra: 

   ( )        ⃗⃗    ⃗⃗  
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THE COVARIANCE MATRIX AND CHI-SQUARED VALUES 

Consider the familiar chi-squared test statistic for uncorrelated data, the classic reliability 
weighted description of how data varies about the mean: 

   ∑
  
 

  
 

 

 

If the data is uncorrelated, its covariance matrix (and inverse) is: 

  [
  
   

   
  

   

]      

[
 
 
 
 
 

  
   

 
 

  
  

   ]
 
 
 
 

 

Which means we can write the chi-squared expression as: 

            

As it happens, this is the most general expression for the chi-squared statistic, working even for 
correlated data.  

Note: The above assumes ⟨  ⟩      , i.e. that each variable’s average has already been 
subtracted away. 

When we’re trying to fit an average or estimate some value, we do so by attempting to minimize 

this    value. Equipped with this expression of    for correlated data, a lot of avenues are 
opened up to us. 
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ESTIMATING THE AVERAGE OF CORRELATED DATA 

Armed with our    expression, we can set about using it to estimate values of interest. The first 
thing we might try our hand at is getting the best guess for the average of a data set,  ̅. 

In this case, the    value is: 

            ∑∑   
  (    ̅)(    ̅)

  

 

Which we then optimize: 

   

  ̅
    ∑∑   

  [(    ̅)  (    ̅)]

  

 

Rearranging: 

  ̅∑∑   
  

  

 ∑∑   
    

  

 ∑∑   
    

  

 

 ̅  
∑ ∑    

      

∑ ∑    
  

  

 

Notice that this is a more complicated version of the result for uncorrelated data: we weight 
each value oif    by the inverse of its variance and then normalize. 

This is sometimes described by defining a matrix ‘L’, filled with 1’s: 

  (
 
 
 
) 

In which case we can write the average in the much more concise form: 

 ̅  
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USING COVARIANCE FOR PREDICTION/ESTIMATION 

Suppose we have some dataset, *  +, that we know the covariance matrix for, but we don’t have 
an actual measurement for one element,   . Using our understanding of covariance, we can get a 

best-estimate for    by choosing a value that minimizes the    value. 

Note: The following assumes ⟨  ⟩      , i.e. that each variable’s average has already been 
subtracted away. 

Firs, remember that the    value is given by: 

            ∑∑   
      

  

 

Now, optimize this value: 
   

   
    ∑   

    
 

 

∑   
    

 

   

Applying this equation to index    , and then rearranging: 

       
  ∑   

    
 

 

 
[   
    ⃗⃗ ]

   
  

 

Here,    
   is the     column/row of the     matrix, excluding the     element in that 

row/column,     
  . 

Notice that this estimate for    is a linear sum of remaining values: 

    
    

Where: 

   
   
  

   
  

 

We have an expression for the variance of a linear sum: 

 (    )
 
      

This is the variance in    that can be accounted for by the covariance. The actual uncertainty in 
the value is its initial variance,    , with this value subtracted away: 

   
       

    

When predicting large numbers of variables at once, this formulation can be a little cumberson, 
as it requires us to invert the matrix ‘C’ every time we estimate a value. A more efficient 
rearrangement of this process is shown in the stochastic signals section. 
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SUMMARY 

The covariance matrix contains the variances and covariances of a set of data: 

         (     )          

In this matrix, we’ve summarized everything about the variance and correlation of the system: 

  [
  
         

         
  

   

] 

When we take a linear sum of the dataset, its variance can be described by adding together 
these covariances: 

  ∑    
 

    ( )  ∑         (     )

  

 

Typically summarized in linear algebra form as: 

   ( )        ⃗⃗    ⃗⃗  

The    statistic of a dataset is found from: 

          

Defining the matrix ‘   ,   -’, the average of a correlated dataset is estimated with: 

 ̅  
      

      
 

And an estimate can be made for a value of an value in a dataset with: 

    
    

   
       

    

Where: 
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STOCHASTIC PROCESSES: BRINGING IT ALL TOGETHER 

An area that the correlation concepts discussed in this document become extremely useful is in 
analysing stochastic processes: signals that are partially random, but still have non-zero 
correlation between nearby values. This means that, when we have at least one measurement of 
the signal, we can use prior knowledge about the autocorrelation function of the signal to build 
up a covariance matrix and predict the signal’s behaviour in the places we aren’t observing it. 

BUILDING THE COVARIANCE MATRIX IN STOCHASTIC SIGNALS 

Stochastic signals aren’t perfectly determinant :having perfect information about one point in 
the signal does not guarantee perfect information about one down the track due to the 
accumulated effect of the random elements. Instead, we say that nearby points are “correlated”, 
i.e. that, because the random elements take time to exert there influence, points in the signal at 
similar times are likely to be similar to eachother. 

This idea manifests in the autocorrelation function, which is often times already found 
analytically for a process. For example, a damped random walk of characteristic timescale    
has an autocorrelation function of: 

 ( )     ( 
| |

 
) 

Meaning that, if we measure the signal at some time, we can make guesses about the signal at 
nearby times with exponentially decreasing reliability.  

Because we know the correlation, we also know the covariance. If we have some set of data (i.e. 
measurements of the signal at certain times) we can use this known covariance to build up a 
covariance matrix between them: 

                

The matrix ‘S’ is the covariance due to the stochastic nature of the signal. In instances where 
there is noise as well, we need to account for that as well. 
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REARRANGING THE ESTIAMTE/PREDICTION TO BE MORE EFFICIENT 

In the covariance matrix section, it was said that the best estimate (i.e. mean) for a variable that 
already know all the covariances for is given by: 

    
    

With variance 

   
       

    

Where: 

   
   
  

   
  

 

This is a perfectly valid way of using covariance to predict a value and to put constraints on its 
uncertainty, but has some clear practical shortfalls: namely that we have to calculate     every 
time we want to get a new   .  

Fortunately, it turns out that (though not proven here) the weighting vector can be expressed in 
a much more convenient way: 

  
   
  

   
  
     

   

Where    is a column vector populated with the covariances of the data point we’re predicting 
with the datapoints we’ve measured, as arrived at from the stochastic signals autocorrelation 
function, I,e: 

,  -  ⟨    ⟩ 

With this new description of the weighting vector, our expression becomes: 

     
          

  ⟨  
  ⟩      

     
  

In this format, we only need to invert the data-data covariance matrix once to get    , and we 
can re-use this for as many particular instances of    as we like.  

In fact, the linearity of this formulation means that we can replace the estimate-data covariance 
vector with an estimate-data covariance matrix so as to estimate as many datapoints at once as 
we like. 

Note: The above assumes ⟨  ⟩      , i.e. that each variable’s average has already been 
subtracted away. 
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HANDLING MEASUREMENT UNCERTAINTY 

Measurement uncertainty is surprisingly easy to account for. Suppose your measurements have 

(1 STD) error *  +, leading to variances of   
 . We treat these as being the effect of a (usually 

uncorrelated) “noise” signal on top of the stochastic process: 

      

With its own covariance matrix, ‘N’ For uncorrelated noise errors, this is just a simple diagonal 
matrix: 

  [
  
   

   
  

   

] 

Such that the overall covariance matrix is: 

      

From here, there’s nothing different from the cases explained above. 

As an example, here is the described process applied to a damped random walk signal: 

. 


