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ABSTRACT 
This report presents an algorithm to calculate the equilibrium state of ideal gas species of fixed volume and 

internal energy by minimizing the system’s Gibbs free energy, specifically solving the temperature and 

chemical species abundance. Two algorithms are considered: the first a reduced non-stoichiometric algorithm 

based on the formulation of Zelenznik & Gordon and Gordon & McBride and in their CEA program [1] [2], and 

the second an independently developed stoichiometric algorithm that makes use of the Nelder Mead 

optimization algorithm. The equilibrium problem for ideal gases is considered to be a solved problem [3], and 

so this report acts as a reiteration of existing well established methods in the literature rather than an 

investigation into novel approaches to the problem. 

The algorithms and their applications are specifically formulated for equilibrium flow calculations in Eilmer, the 

University of Queensland’s finite volume computational fluid dynamics program. The system constraints and 

algorithm formulation are provided with this application in mind, and some suggestions are made for effective 

integration of the algorithms into the main Eilmer program. 

The two proposed methods are prototyped, tested and validated against the results of CEA, and are compared 

to against one another in terms of efficiency, reliability and ease of use, with validation results presented for 

the ion-free dissociation of nitrogen. The “Lagrangian Newton Raphson” approach, modelled after a simplified 

version of CEA’s iteration algorithm, was found to consistently outperform the stoichiometric algorithm by 

every relevant metric, and so is selected as the best option for future use and development. This algorithm is 

found to be fast, reliable, accurate and robust when used in systems that meet the physical conditions that are 

of interest in equilibrium flow calculations. 

1 INTRODUCTION 
“Eilmer” (pronounced “ell-merr”) is a computational fluid dynamics (CFD) program currently maintained by 

The University of Queensland (UQ) that uses a finite volume approach to simulate complex fluid flows, 

including those at high temperature. Chemical reactions can often occur at an appreciable rate in such 

systems, and so it becomes important to track how the fluid composition evolves throughout the flow. In very 

high temperature regions, this becomes difficult to achieve practically through direct simulation of the 

reaction rates, with the integration timescale becoming prohibitively small and the underlying reaction rate 

data becoming increasingly unreliable [4] [3]. To avoid these pitfalls, Eilmer frequently makes use of an 

“equilibrium flow” assumption at certain points in the flow, in which the chemical reactions are idealized to be 

so high that each point in the flow has settled out to the state of local thermodynamic equilibrium.  

 
Figure 1.1-Eilmer Logo 

The solving of chemical equilibrium is a separate and well established problem, which can be approached 

independently of many of the complexities of CFD simulation. At present, Eilmer calculates equilibrium 

conditions with an external program, NASA’s ‘Chemical Equilibrium with Applications’ (CEA), a publically 
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available program that can calculate chemical equilibrium for a wide variety of system types. However, this 

‘outsourcing’ of equilibrium calculations is restrictive and unwieldy, and so it is of practical interest to develop 

an equilibrium calculator integrated into Eilmer itself. 

This report outlines the development of a standalone iteration equilibrium solver for ideal gasses, aimed to 

fulfil this objective. Presented within this report is: 

 An overview of the history and types of general chemical equilibrium algorithms; 

 An introduction to the principles, both physical and mathematical, required to understand the the 

basics of the chemical equilibrium problem; 

 The formulation of a Newton-Raphson equilibrium solver algorithm, modelled after the process used 

by CEA; 

 The attempted formulation of an alternative algorithm to make use of Eilmer’s existing Nelder Mead 

optimization module; and 

 An analysis and comparison of the performance of the two methods. 

Calculating equilibrium for a system of ideal gases is generally considered to be a solved problem [3] [5] [6], 

and so this report does not contain much novel information regarding equilibrium solvers. It is instead 

intended to act as a focused analysis of the methods best suited to the specific requirements of Eilmer, and as 

an introductory resource for related work in the future. 
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2 REVIEW OF LITERATURE 
In this section, a broad overview of chemical equilibrium solvers is provided: their history, the different types 

of solvers and which methods are most commonly adopted. This is not, by any measure, intended to be an 

exhaustive review of the field, and is instead intended to act only as an introduction for the uninitiated to 

provide an understanding of the already well-established methods and principles relevant to this report and its 

contents. For the specific physical and mathematical principles at play in this report, see section 4.1. 

2.1 AN OVERVIEW OF SOLUTION TYPES 

The ability to efficiently calculate chemical equilibrium is a very practical problem, with any number of 

applications in fields ranging from propulsion to materials science [3] [4]. As such, there is a long standing 

historical pursuit, closely tied to the development of digital computers [3], to find efficient and generalized 

algorithms for calculating CEC. 

Speaking very broadly, the equilibrium state can be described in and solved for in one of two ways. The first is 

to consider equilibrium as the state at which the net reaction rate of all chemical species goes to zero; finding 

which is an exercise in multivariate nonlinear root-finding  of the reaction equations [4] [3]: 

 

  
   ∑  ( ⃗   )

 

      

However, this approach is hard to generalize beyond moderate temperature systems of low complexity, as it 

requires precise knowledge of every possible reaction between all simulated chemical species, something that 

becomes increasingly unreliable at higher temperatures [3] [4]. In this way, it inherits many of the issues 

associated with time-marching simulation of the reactions. 

In the second approach, equilibrium is formulated as the state that minimizes the system’s Gibbs Free Energy, 

while still obeying the systems constraints (e.g. atomic element abundance, volume, internal energy) [4] [5] [3] 

[7] [1]. Unlike reaction-balancing, this ‘energy minimization’ approach only requires knowledge of the steady-

state thermodynamic data of each chemical species, something that is much more reliably available in the high 

temperature regime [4] [8] [5]. 

Speaking generally, a thermodynamic system’s free energy is a function of its chemical composition and any 

two intensive properties, such as temperature or pressure [9]. For single phase systems, such as the well mixed 

ideal gasses usually considered in Eilmer, it can be shown that this constrained function is convex for any 

closed system [10] [9]. As such, the problem of equilibrium becomes the straightforward numerical problem 

of: 

 Locating the state (i.e. chemical species abundance and any two state properties) that minimizes free 

energy, while also: 

o Obeying all constraints on atomic abundance;  

o Obeying any two additional constraints (e.g. fixed temperature, entropy, internal energy); 

and 

o Ensuring the calculated state is physical (e.g. positive temperature and species abundance) 

For the formulation of the free energy and constraints relevant to the problem of finite volume CFD, see 

section 4.1. This problem rarely has an analytical solution, and must instead be found, even in relatively simple 

cases, by iterative numerical methods. This brings the equilibrium problem to an exercise in multivariate non-

linear numerical optimization [1] [3] [11] [12] [5].  
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These ‘energy minimization’ methods are broadly grouped into two categories: 

 Stoichiometric Algorithms, in which each iteration obeys the system constraints. This uses the system 

constraints to reduce the degrees of freedom over which optimization is performed. 

 Non-Stoichiometric Algorithms, in which only the final iteration is required to obey the system 

constraints, and the interim iterations are unconstrained. 

As the number of constraints (i.e. chemical elements) increases, stoichiometric algorithms become increasingly 

constrained, decreasing the degrees of freedom to optimize over. For a system of ‘I’ chemical species and ‘J’ 

atomic species, a non-stoichiometric algorithm will have: 

    

Degrees of freedom to optimize over. Conversely, non-stoichiometric algorithms, which are typically 

formulated by way of the method of Lagrangian multipliers (see section 4.2.1), become more complex as 

additional elements are added For ‘I’ chemical species and ‘J’ atomic elements, a non-stoichiometric algorithm 

will, at first analysis, require optimization over: 

      

Degrees of freedom, or up to two less if the constraints define the system properties directly (e.g. fixed 

pressure or temperature).  

At first analysis, stoichiometric algorithms would seem to scale better with the system complexity, but this is 

not true when considering the family of ‘reduced’ non-stoichiometric algorithms. The structure of the iteration 

equations for non-stoichiometric algorithms allow them be simplified algebraically such that the 

computational cost of each iteration scales predominantly with the number of atomic species, a step that is 

sometimes called ‘reduction’.  Though the degrees of freedom over which the optimization is performed are 

unchanged, the cost-dominant part of the iteration now scales with: 

    

Rather than      . This means that additional chemical species may be added to the system for only a 

small increase in computational expense.  

Solver Scheme 
Effect on Cost of… 

Increasing No. Species ‘I’ Increasing No. Elements ‘J’ 
Stoichiometric Increased Decrease 
Non-Stoichiometric Increased Increase 
Non-Stoichiometric (Reduced) No effect Decrease 

Table 2.1.1-Simplified verview of Solver Families 

This has clear practical benefits: a single set of reacting species will have a fixed number of available elements, 

but these may be combined in to any number of molecular products. Take, for example, the burning of some 

hydrocarbon in oxygen: only three elements are present (O,H and C) but dozens of chemical species may be 

formed in some amount, e.g.  

                                 

This efficient scaling has made reduced non-stoichiometric CEC solvers the dominant class of all modern 

practical methods. One such algorithm is presented in this report (section 5.1) as well as a simple non-

stoichiometric algorithm for comparison (section 5.2).  
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2.2 A BRIEF HISTORY OF CEC SOLVERS 

The efficient scaling of the reduced non-stoichiometric algorithms has made them the predominant means of 

approaching the general equilibrium problem since the mid-20
th

 century [3] [5]. The first general purpose 

algorithm of this type was introduced by Brinkley [8], and was soon after joined by the alternative methods of 

White [11] and Huff [13]. These three algorithms have since come to be considered foundational works for CEC 

solvers, with most modern solvers having either directly or indirectly evolved from them in some way [14] [5]. 

A small set of linear programming algorithms have been developed across the years [15] [16], but these see 

little widespread use after the establishment of the aforementioned Newton Raphons approach. 

Huff, White and Brinkley describe the problem and their approaches to it with very different language, which 

has historically led to some confusion about their similarity [3]. Brinkley for example speaks of ‘reaction 

constants’ despite utilizing a variation of the energy minimization method, while White uses similar language 

as is used in this report. An overview by Gordon and McBride [2] [7] highlighted the similarities between the 

three methods, and found that, with some slight modifications, all three were either instances of or could be 

recovered from the same formulation:  

1. Define a free energy state function from the available thermo chemistry data 

2. Use the method of Lagrangian multipliers and the prescribed system constraints to develop a system 

of equations whose mutual solution defines the equilibrium state 

3. Location this solution via a Newton Raphson iteration method 

This general process is used by Zeleznik and Gordon in the formulation of their CEA program [1], and has been 

used as the basis of the solver outlined in this project (see section 5.1 for a specific derivation). 

 
Figure 2.2.1-A Simplified Timeline of CEC Solvers 

This general algorithm has been well established since the 1950s, and as such the solving of single-phase 

equilibrium, particularly for ideal gasses, is considered a ‘solved’ problem [3] [10] [5]. Despite this general 

similarity of approach, there remains some freedom as to how specifically how iteration equations are 

formalized.  For example: 

 The constraints on system temperature may be introduced in the formulation of the Lagrangian 

potential, or simply introduced as an additional equation to be solved for during the rootfinding stage 

 The system of equations that is solved by the Newton Raphson algorithm may be formalized in any 

arbitrary way 

 The Newton Raphson correction variables may be selected arbitrarily, provided that they adequately 

represent the degree of freedom 
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We have specifically adopted the methodology of Gordon & McBride in their CEA program [1], namely their 

use of logarithmic correction variables and unitless equations in the Newton Raphson rootfinding stage, 

though some modifications have been made to apply the method to the specific constraints of CFD.  This 

specific approach is referred to as the “Lagrangian Newton Raphson”, or “LNR” method. 

Development in the field since the establishment of the general method has been focused on dealing with 

non-ideal behaviour: the mixing of gas and condensed matter, chemical interaction the presence of multiple 

phases and the effects of miscibility gaps. A major issue facing multi-phase systems is the existence of local 

minima in the energy function, corresponding to pseudo-stable physical states [16] [5]. There also exist 

methods for approaching non-ideal behaviour, particularly near-ideal gas mixtures, but these are not discussed 

here.  
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3 SCOPE & GOALS 
This project is based around successfully accomplishing a single goal: developing a fixed volume/internal 

energy equilibrium solver for integration in the Eilmer CFD program. To this end, its scope is limited and its 

goals are strictly design oriented. As a design project, the project has included: 

1. The prototyping of both a stoichiometric solver and reduced non-stoichiometric solver in python, with 

the later in the style of the NASA CEA program  

2. The development and refinement of the non-stoichiometric solver in the ‘D’ programming language 

3. The testing of this integrated solver for a number of systems to validate and measure performance 

To this end, the report has a limited scope, only examines: 

 A specific implementation of the reduced non-stoichiometric algorithm 

 A specific stoichiometric formulation for use with the Nelder Mead potential 

 Systems of well mixed ideal gasses 

 Systems for which the empirical steady state thermodynamic data is readily available 

Not included in the scope of this report is any examination of: 

1. Any alternate formulations of the reduced non-stoichiometric method 

2. Alternate stoichiometric formulations or optimization methods 

3. Any investigation of non-ideal, multi-phase or rate limited equilibrium systems 

4. Extension of the models into high temperature or high density domains 
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4 OVERVIEW OF THEORY 
This section will act as an outline of the relevant chemical physics and numerical methods that are employed in 

the two equilibrium solvers presented in this report. Section 4.1 describes the physics of equilibrium and the 

specific constraint conditions and idealizations that are used in this project’s modelling of equilibrium flow, 

while section 4.2 acts as a reference for the general forms of the numerical methods that are employed 

throughout the methods proposed in section 5. 

4.1 PHYSICAL DESCRIPTION OF EQUILIBRIUM 

In the equilibrium flow limit, reaction rates are much faster than the local mass flow rate, making each finite 

volume element effectively a well-mixed system of fixed (given) volume and internal energy: 

     

     

Each element then must conserve some given abundance of each atomic element present in the system. This 

element conservation constraint is expressed as a linear sum: 

        ∑     

 

 

Where “  ” is the number of moles of species ‘i’, “  ” is the number of moles of element ‘j’, and “   ”is the 

number of atoms of element ‘j’ in species ‘i’.  In some sources, this is sometimes expressed in linear algebra 

form as: 

 ⃗    ⃗  

In this report, we additionally assume that all reaction species are ideal gasses, i.e. following the ideal gas law 

and law of partial pressures [7] [9]: 

       

         

Where   ∑     is the total number of moles in the system. Additionally, the species are assumed to have 

well defined molar enthalpies (  ), internal energies (  ) and standard entropies (    ) as functions of 

temperature only, another property of ideal gasses [17] [9] [17] [18]: 

  ( )   ( )     ( ) 

And the entropy of a species not at standard pressure having a partial pressure based correction [1] [9]:  

       ( )     |
  

  

| 

     ( )     |
 

  

  

 
| 

Where    is the standard pressure (usually 1 bar or 1 atm) for the available thermodynamic data. This also 

gives the chemical potential (Gibbs free energy per particle) of each species: 

          

           |
  

  

|               
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Such that the total internal energy, enthalpy, entropy and Gibb’s free energy of the system is simply the sum 

of the contribution from each species: 

  ∑     

 

   ∑     

 

 

  ∑     

 

   ∑    

 

 

Where enthalpy ‘H’ and Gibb’s free energy ‘G’ may also be defined as: 

       

       

Note that, because the volume is fixed, the system’s entire state, whether obeying the constraints of not, is 

well defined by the species composition and temperature, i.e.: 

                    ( ⃗   ) 

In this report, equilibrium is defined as the state ( ⃗   ) that minimizes the Gibb’s free energy, while still being 

physical (i.e. positive temperature and mole counts) and obeying the conservation of atoms counts and 

internal energy. 
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4.1.1 NUMERICAL APPROXIMATION OF THERMO-CHEMICAL DATA 
To calculate the equilibrium state of a system of chemicals, reliable and precise information is required about 

the thermochemical properties of each species. This is simplified by us only considering the ideal gas phase, 

such that each species requires only a well-defined function of the specific heat capacity: 

  ( ) 

From which the remaining thermodynamic curves can be recovered: 

  ( )     ∫
  ( 

 )

  

 

  

    

 ( )     ∫   ( 
 )

 

  

    

 ( )   ( )  
  

 
 

   ( )     
  ( )    ( )     

 
T0=298.15 K, the standard temperature  

hf is the species’ standard enthalpy of formation 

In testing the CEC solvers presented in this report, three models were used. For simple ‘figure of merit’ testing, 

a crude low temperature approximation of constant heat capacity was used: 

  ( )    (  ) 

 ( )       (  )(    ) 

Once the prototypes were completed, this model was replaced with the ‘Shomate’ equations, which use a five 

parameter fit for the specific heat, and two additional integration constants for enthalpy and entropy [18]. 

  ( )               
 

  
 

  
 

      
 ( )          *   

   

 
 

   

 
 

   

 
 

 

 
    + 

  ( )     | |     
   

 
 

   

 
 

 

   
   

These seven parameters are held constant over a fixed range , e.g.               [           ], which 

the full curve for each function being a piecewise function. These ‘brackets’ typically extend up to ~20,000 K, 

and the full set of coefficients for selected species (in molar SI units) can be found in appendix C In instances 

where the temperature was above this range, the specific heat was approximated to be constant and held at 

     (          ). 

Though most testing was carried out with the Shomate equations, the ‘Glenn’ coefficients were adopted for 

validation against CEA, as this is the model that CEA uses [1]. This model is extremely similar to the Shomate 

equations, but make use of an additional     term in the description of    [17]: 

  ( )

 
    

                 
     

     
  

 ( )

  
 

  

  
 

  

  
   

  ( )

 
     

   

 
 

   
 

 
 

   
 

 
 

   
 

 
 

  

 
 

  ( )

 
  

  

   
 

  

 
      | |      

   
 

 
 

   
 

 
 

   
 

 
    

This model was only used for the dissociation of nitrogen. The coefficients and their brackets may be found for 

N and N2 in appendix C. 
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4.2 EMPLOYED NUMERICAL METHODS 

4.2.1 METHOD OF LAGRANGIAN MULTIPLIERS 
The method of Lagrangian multipliers is a general method for converting a constrained optimization problem 

to an unconstrained one with more degrees of freedom. 

If there is a scalar potential function  (  ) subject to some family of constraints   (  )   , then the critical 

points of the constrained system occur when the gradient of ‘f’ is parallel to the gradient of all of the 

constraints: 

  (  )         

If we construct a Lagrangian potential, defined:  

 (     )   (  )  ∑  

 

  (  ) 

Then this parallel gradient condition is achieved when: 

  

   

           
  

   

     

In other words, the unconstrained minimum of  (     ) is the constrained minimum of   (  ). If a system has 

‘A’ degrees of freedom and ‘B’ constraints, the critical points are defined by the roots of a system of ‘A+B’ 

equations.  

This method is used to apply the physical constraints (e.g. atomic element abundance) to the free energy 

function in the LNR CEC solver (section 5.1) 

4.2.2 NEWTON RAPHSON OPTIMIZATION 
The unconstrained minimum of a multivariate function  (  ) is defined as the point at which all of the 

function’s partial derivatives go to zero, i.e. the mutual solution to the system of equations: 

  

   

       

Though there are no ways to solve the roots of a system of non-linear equations in general, the condition of 

that system being the gradient of a potential function allows the use of the Newton-Raphson method [14], a 

multivariate extension on Newton 1 dimensional root finding method.  

Expressing the system of equations as a vector  ⃗ , a function of some arbitrary coordinate system      (  ), we 

can take a linear approximation in the correction variables about a fixed point ‘    ’for each equation: 

  (  )    (   )  ∑
   (   )

   
 

    

The elements of    are called ‘correction variables’, and, provided they account for all necessary degrees of 

freedom, can be defined almost arbitrarily. 
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Collectively, the entire system may then be approximated by a linear system: 

 ⃗ (  )   ⃗ (   )       

Where ‘J’ is the Jacobian matrix: 

  

[
 
 
 
 
   

   

   

   

 

   

   

  

   ]
 
 
 
 

 

We want to take a step     such that  (       )   , from which we may rearrange for an iteration equation: 

             

         ⃗ (  ) 

By iterating on the value of   , the roots of the system, and thus the critical point of the Lagrangian potential, 

are approached.  

Note that this iteration requires the inversion of the matrix  . Matrix inversion is, outside of specific cases, a 

particular expensive operation, scaling with     for an     matrix. As such, the dominant determining factor 

for the cost of each iteration, and for the Newton Raphson method at large, is the size of the matrix J.  

This rootfinding/optimization method is used in the LNR solver to locate the minimum of the constrained 

energy function. 

4.2.3 STEEPEST DESCENT OPTIMIZATION 

For a scalar potential function: 

 (  ) 

Any small change     will produce an approximate change in ‘ ’: 

   (  )    (   )      

If the goal is to locate the minimum of the function, we can track ‘downhill’, i.e. such that     is anti-parallel to 

the gradient vector: 

         (  ) 

The step scaling,   
|   |

|  (  )|
, can be selected arbitrarily. If the value of the function at the minimum is known, a 

reasonable estimate is to scale the step such that, under a 1D linear approximation, the iteration will take the 

function to that minimum value. 

  (  )    |  (  )|        (  )( ) 

For a step scaling: 

   
 (  )( )      

|  (  )| 
 

In this report, this ‘steepest descent’ process is employed in sections 5.1.3 and 5.2.3 to locate ‘stoichiometric’ 

initial states for optimization, i.e. states that satisfy the system’s physical constraints. 
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4.2.4 NELDER-MEAD OPTIMIZATION 
One of the solvers in this report makes use of the Nelder-Mead algorithm, a generic multivariate 

unconstrained optimizer that uses a successive ‘guess and check’ method to locate and converge towards a 

local optimum of some objective function. This is done by constructing a ‘simplex’ (an n-dimensional analogue 

to a triangle or tetrahedron) which is expanded until an optimum is located, and then collapsed until precise. 

In this way, it is analogous to an unbracketed golden search method, but generalized to ‘n’ dimensions.  

To this end, the Nelder Mead algorithm requires only that the function it is optimizing be well defined at all 

points in the parameter space, and so can be used as a generic ‘black box’ optimizer for some potential 

function. 
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5 METHODS 
This section will outline the two methods that were prototyped for use as an Eilmer equilibrium calculator. 

Both methods were prototyped in python (python code available in appendix A), though only the non-

stoichiometric LNR method was fully developed for use in Eilmer (Dlang code available in appendix B) 

5.1 LNR SOLVER 

The first method that will be presented is a reduced non-stoichiometric algorithm that uses Lagrangian 

multipliers (see section 4.2.1) to apply the system constraints, and optimizes the resulting potential using the 

Newton Raphson method (see section 4.2.2). This formulation is referred to in this report as the “Lagrangian 

Newton Raphson” (LNR) method, and is an instance of the process that is almost universally used for general 

CEC solvers [3]. This section will describe the specific formulation of the iteration equations used in this 

project, as well as the convergence/halting conditions, and two methods for generating starting points for the 

iterations. This is the CEC solver programmed in both the python prototype and the final D project, the code 

for both of which are available in appendices A and B, respectively. 

5.1.1 FORMULATION 
In this project, we broadly adopt the methodology of White [11], Gordon & Mcbride [2] [7] and (Zeleznik and 

Gordon [1]: using the method of Lagrangian Multipliers and a Newton Raphson method with logarithmic 

correction variables. We specifically emulate the process of Zeleznik & Gordon in their development of the 

NASA CEA program. This method is distinct in that it: 

 Makes all physical equations unitless in the rootfinding process 

 Leaves temperature as a free (unoptimized) variable at the Lagrangian potential stage; and 

 Restricts temperature only by the introduction of an additional constraint (in our case, internal 

energy) at the rootfinding stage. 

We begin with the Gibbs free energy function for a mixture of ideal gasses, as the function to me minimized: 

 ( ⃗   )  ∑  (  
 ( )      |

    

  

|*

 

 

And the elemental abundance constraints as a set of equality constraints: 

∑      

 

      

These are then assembled into a single, unconstrained, Lagrangian potential: 

 ( ⃗      )  ∑  (  
 ( )      |

    

   
|*

 

 ∑  (∑     

 

   +

 

 

     
 ( )      |

    

   
| 

As per the method of Lagrangian Multipliers (see section 4.2.1) the constrained minimum of  ( ⃗   ) lies at the 

unconstrained minimum of  ( ⃗      ). Using the CEA method, we need only optimize for  ⃗  and    at this stage, 

the temperature constraints are introduced at the later ‘rootfinding’ stage. 

  ( ⃗      )    
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For   chemical species and   atomic species, this yields a system of     equations. We now additionally 

introduce the internal energy constraint to restrict the system temperature: 

( ) 
  

   

     
    [  |

    

   
|   ]  ∑      

 

    ( ) 
  

   

   (∑     

 

   +  

  ( )   ∑    ( )

 

    

Zeleznik & Gordon make the unexplained choice of not including the 
   

   
    term in their version of this 

derivation, resulting in: 

( ) 
  

   

     
    [  |

    

   
|]  ∑     

 

     

Functionally, this produces a small deviation in the domain |  |   . This has not been included in the rest of 

the derivation, but the choice may be introduced in both the prototype and final solver by way of a simple 

Boolean switch (See appendices). 

The mutual solution to all three of these equations represents the optimum to our system. To solve them, we 

first, as per the CEA method, make all physical equations unitless: 

( )   
  

 

  
 [  |

    

   
|   ]  ∑

  

  
   

 

    ( )   ∑     

 

      ( ) 

  ∑  

  

  
 

 
  

  
 

From here on out, we define    
  

  
, and use these as a set of   independent variables in place of the 

Lagrangian multipliers. We now employ a Newton Raphson iteration scheme (see section 4.2.2) with 

logarithmic correction variables, so that the solver cannot iterate into a negative    or T: 

 ( )

   |  |
      

 ( )

   

        

 ( )

   | |
   

  

  
 

 ( )

   |  |
          

 ( )

   

      

 ( )

   | |
   

 ( )

   |  |
   

  

  
    

 ( )

   

      

 ( )

   | |
 

  

  
 ∑  (

   

 
 

  

  
*

 

 

In 
 ( )

   | |
, we make use of: 

   
 

  
 

 (      )
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Using these partial derivatives, we may assemble three sets of Newton Raphson equations: 

( )    |  |  ∑      

 

 (  
  

  
*   | |   [

  
 

  
 [  |

    

   
|   ]  ∑      

 

] 

( ) ∑     

 

   |  |   [∑      

 

   ]  

( ) ∑  

  

  
   |  |

 

 (
  

  
 ∑  (

   

 
 

  

  
*

 

+   | |   [∑   

  

  
 

 
  

  
] 

In set (3), the linearity of the    corrections means that we can simplify further by noting that, while iterating 

between steps (k) and (k+1): 

∑      

 

 ∑   [  
(   )

   
( )

]

 

∑     

 

 ∑     
( )

 

 

Thus, instead of calculating a correction to   , it is more convenient to calculate the next value step directly. 

Notice that the structure of equation (1) allows us to easily rearrange for    |  |: 

   |  |   [
  

 

  
 [  |

    

   
|   ]]  ∑     

 

 (  
  

  
*   | | 

Which may be substituted into the remaining equations and rearranged to arrive at: 
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We have then arrive at a linear system describing the iteration process. 
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Where we have defined the matrix and vector: 

  

[
 
 
 
 
 
 
 
 ∑     (  

  

  
*

 

∑         
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This substitution stage, which Gordon & McBride refer to as ‘reduction’ [1], reduces the size of the Jacobian 

matrix to (   )  (   ). As the cost of each iteration in this method is dominated by the calculation of    , 

this means that the cost of the LNR method scales primarily with the number of atomic species, with little 

effect at all from the number of chemical species. 

We can then find the corrections to   |  | by: 

   |  |⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗             

(

 
 

  

  
  

  

  
  

 )
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    ]

 
 
 
 

 

For the sake of convenience in programming, we also express these in summation form: 
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We may recover the Zeleznik & Gordon formulation by replacing any  ‘
  

  
’  term with ’ 

  

  
  ’.  

This provides the ‘direction’ of the iteration, but a step-scaling factor ‘  ’may also be applied to improve 

stability and avoid iterative oscillation: 

                

  | |⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗      | |⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗      | |⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

    

The choice of scaling factor is discussed in the section 5.1.2. 
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5.1.2 CONVERGENCE TEST & HALTING CONDITION 
To examine convergence, we make an estimate of the solver’s current deviation from the solution by the norm 

of the iteration’s update vector: 

   ∑   
 

 

 ∑    |  |
 

 

    | |  

An optimization attempt is considered to have converged if both: 

 The error is below some user-defined tolerance threshold; and 

 The error has been decreasing for more than ‘n’ iterations. 

Where n=10 was found to be a suitable value in most cases. The first condition is a precision tolerance, while 

the second avoids mistakenly ending the iterations at a near-stable point in the iteration scheme. For more 

details as to why this is necessary, see section 6.1.2. 

If the simulation has failed to meet these convergence conditions after some cut-off number of iterations 

(~100 iterations was found to be suitable) it is considered to be non-convergent. If this is the case, repeated 

attempts are made by the following procedure: 

1. Half the step scale ‘ ’ and attempt to solve again from the same initial state 

2. Half   once more and try again 

3. If still non-convergent, try resetting the initial conditions and trying again 

4. Repeat steps 1 and 2 

5. If no solution has been reached, return an error 

In systems where there is a physical solution to be found, the initial state was rarely found to have an effect on 

convergence, and step sizes of       were found to be sufficiently stable in most cases. The remaining steps 

exist either to improve efficiency or robustness of the solver. 

5.1.3 STARTING CONDITIONS 
In some cases, an initial estimate of the optimized solution will be available; either from the result of a 

simplified model or from the solution of a previous solver with similar input conditions. However, such an 

estimate is not always readily at hand, and a reliable means of generating an initial state for iterations to begin 

at is required. In this project, two methods for finding this initial state were investigated. 

Method 1: Averaged Atom 

Gordon & McBride [1] indicate that a suitable initial state is: 

        

               

Where the chemical species abundance is decreased by a factor of 10 if the simulation fails to converge.  
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We employ a similar method, but with the initial guess for the chemical abundance scaling with the number of 

atoms: 

   
∑    

 
 

        

                   
 

        

        

We refer to this as the ‘averaged atom’ method, and have used it as the default method in the solvers when a 

more specific initial state is not available. The reasons for this choice are discussed in section 6.1.2. 

Method 2: Stoichiometric Initial Conditions 

Many sources on CEC solvers indicate that a good starting position for a solver is one that obeys the systems 

physical constraints, though it may not necessarily be similar to the optimized solution. To calculate such a 

state, a steepest descent rootfinding method is here used. 

We first define a convex potential that can only reach a minimum when the system constraints are satisfied. In 

keeping with the logic of Gordon & McBride, we make the energy terms of this potential unitless: 
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We can finding the minimum of this potential by a steepest descent method with logarithm correction 

variables to stay within the positive     : 
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And full gradient: 
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By iterating the     (
  | |

  | |
* vector, starting with a state defined by method 1 (above), we can track towards a 

physically constrained system state via the steepest descent method, knowing that the minimum possible 

value of ‘P’ is zero: 

     
 

|  |
 
  

|  |
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5.2 STOICHIOMETRIC SOLVER 

Though the reduced non-stoichiometric LNR method is generally the most efficient means of locating solving 

for equilibrium conditions, a simple non-stoichiometric algorithm was also investigated to compare against, 

formulated to make use of Eilmer’s existing Nelder Mead optimizer module. This algorithm was only 

prototyped in python, but was not found to be reliable enough to warrant further development, for reasons 

that are discussed further in section 7.1. 

This algorithm was developed to make use of Eilmer’s Nelder Mead module as a ‘black box’, simply feeding in 

an initial state and an objective function and allowing it to optimize. As the solver was never integrated into 

Eilmer, an existing Nelder Mead algorithm was used in its place in the python prototype (see appendix A) 

5.2.1 FORMULATION 
In general, the system state can be described by its composition and temperature (see section 4.1), which, for 

‘I’ chemical species, gives I+1 degrees of freedom. However, this state must adhere to a stated internal energy 

and ‘J’ element counts, meaning that the solution space only has ‘I-J’ degrees of freedom.  

The element abundance constraints may summarized as a linear system: 

  ⃗   ⃗  

If there are ‘J’ elements and ‘I’ species, the system has ‘I-J’ degrees of freedom, and we may define ‘I-J’ species 

‘primary’ species and use these to calculate the remaining ‘J’ ‘secondary’ species. This appears as the 

secondary species vector ‘ ⃗   ’ having a square matrix ‘A’ in the element balance: 

    ⃗⃗⃗⃗  ⃗     ⃗⃗  ⃗   ⃗  

   ⃗⃗⃗⃗  ⃗     [ ⃗     ⃗⃗  ⃗]     ⃗⃗⃗⃗  ⃗(  ⃗⃗  ⃗) 

Here, ‘A’ and ‘D’ are subset ‘slices’ of the conservation matrix ‘C’. In this way, the system composition state is 

fully defined by a set vector of primary species counts: 

 ⃗  (
  ⃗⃗  ⃗
   

*   ⃗ (  ⃗⃗  ⃗) 

We choose to divide primary and secondary species to give largest value of  |
   ( )

    ( )
|, so as to provide a well 

conditioned system for the calculation of    .  

Additionally, the internal energy balance may be used to calculate the corresponding temperature for a set 

composition. As internal energy is a strictly increasing function of temperature, there is at most one 

temperature that satisfies the internal energy balance for a set composition: 

 ( ⃗   )       

Finding this temperature,  (    ⃗  ), is a simple matter of 1D root finding, for which many well established 

algorithms exist [14]. Together, these allow the systems entire state to be well defined by the abundances of 

the primary species only: 

         ( ⃗   )            ( ⃗  ) 

In this form, the problem simplifies to an instance of unconstrained optimization over a fixed domain, suitable 

for use with the Nelder Mead algorithm, a general purpose non-linear optimizer algorithm that requires only 

the ability to evaluate a function. This algorithm is already supplied by Eilmer, and so is not discussed in detail 

here.  
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To prevent the solver from venturing into the non-physical domain (the boundaries of which are discussed in 

detail in section 5.2.2), a ‘penalty’ (set as      J) is applied if a negative species concentration or temperatures 

is found when evaluating the system state. The Nelder Mead algorithm is then tasked with optimizing this 

‘windowed’ free energy function: 

       (  ⃗⃗  ⃗)  {
        ( ⃗  )                 ⃗ ( ⃗  )

 ( ⃗  )  
 

For a more detailed description of this ‘window’ region, see section 5.2.2. 

5.2.2 VALID SOLUTION SPACE 
Because of the way the constraints were applied, any given point  ⃗   will satisfy all of the system constraint 

equations, but this does not guarantee that the resulting state will be a physically feasible. For example, 

suppose the system’s energy is lower than the chemical models allows for at absolute zero, i.e.: 

   ∑    (   )

 

 

Attempting to calculate the temperature in this instance will yield    , which is non-physical and will lead 

optimization attempts astray. Similarly, separation of species doesn’t necessarily prevent negative species 

concentrations. For example, consider some dissociating diatomic gas: 

(
 
  

* [  ]  (  )      

This elemental balance is technically satisfied by a nonphysical solution: 

(
 
  

*  (
  
 

) 

So, the physical solution space is bounded by the space between a system of ‘I+1’ linear equations in the ‘I-J’ 

primary species counts, defined by: 

   ∑    (   )

 

        

This will always produce a contiguous solution space to search for the optimum within.  
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As a more complicated example, consider a 4-species, 2 element system: 

*
    
    

+(

 
  

  
  

,  (
  

  
* 

This may be separated as: 

(
 
  

*  [
  

 
 

 

] [(
  

  
*  *

  
  

+ (
  

  
)] 

Using a simplified chemical model as shown below, and setting 1.5 mol of element ‘A’, 1.0 mol of element ‘B’ 

and a system internal energy of          in a volume of 0.1 mm
3, 

we can see the linear bounding surfaces 

for the solution space (figures 5.2.2.1 and 5.2.2.2). Also plotted are the contours of Free Energy for both 

systems. 

  ( )       (     )
  

 
 

    ( )       
  

 
  |

 

   
| 

Species    q    

A 50 kJ/mol 3 100 J/K/mol 

A2 0 J/mol 5 100  J/K/mol 

AB -40 kJ/mol 6 100  J/K/mol 

B2 0 J/mol 5 80 J/K/mol 

Table 5.2.2.1-Example System Chemical Properties 

 

Figure 5.2.2.1- Stoichiometric Solution Space of Low Energy System 

 

Figure 5.2.2.2- Stoichiometric Solution Space of High Energy System 
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5.2.3 ALGORITHM FOR DETERMINING STARTING CONDITION 
The stoichiometric solvers require some initial state that lies within the physically valid solution space for 

iterations to progress from.  This point may be found by any number of methods, including the minimization 

method outlined in section 5.1.3 or by randomly selecting points until a valid state is found. An additional 

method, making use of the linear boundaries on the physical solution space (discussed in section 5.2.2) is also 

presented here. 

The bounding surfaces of the physical solution space are all linear, for ‘I+1’ bounding ‘planar’ surfaces: one for 

each species and one for the internal energy. As linear surfaces, each may be described by their normal vector  

‘   ’ and some offset constant ‘  ’. 

  (  ⃗⃗  ⃗)    ⃗⃗  ⃗           

For a particular state,   ⃗⃗  ⃗, to be physical, it must lie inside of this surface: 

  ⃗⃗  ⃗           

For some starting non-physical guess, we can attempt to iterate towards the physical solution space based on 

which of these conditions are not satisfied. For each condition that is not satisfied, we identify the correction 

(in the direction of that surface’s normal) that would be required until it is: 

( ⃗     ⃗    )            ⃗           

 

     
(        ⃗  )

|   |
 

 

And repeat for all conditions, summing  together to get the direction of the final step: 

  ⃗   ∑    ⃗   
 

 

The estimate is then iterated in this direction, with some step scaling factor  . For iteration index ‘L’: 

 ⃗  
(   )

  ⃗  
      ⃗  

  

The magnitude of the step is defined by a more complicated process. Firstly, it is determined if the iterations 

have been travelling in the same direction for more than 3 steps, where two iterations are considered to be 

travelling in the same direction if they meet the condition: 

  ⃗  
(   )

   ⃗  
 

|  ⃗  
(   )

||  ⃗  
 |

   

Where   is some constant, set at      . If this condition is met, it indicates that the iterations are tracking 

directly towards the physical solution space, and so the step size may be estimated by a pseudo Newton-

Raphson scheme to minimize the function: 

   √∑  
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In which the gradient is estimated by a finite difference method based on the two most recent iterations: 

       
  

(
        

  |  ⃗  
 |

*
 

The additional factor of 1.1 is to ensure the iteration ‘overshoots’ to the interior of the physical solution space 

rather than converging exponentially close to its outside edge.  

If the iterations have failed to travel in a consistent direction for more than 3 iterations, the step size is set as: 

        

Where ‘m’ is the number of iterations since a ‘straight’ iteration was observed. This helps stabilize the 

oscillations onto a path of fixed direction, where the ‘driving force’ from each constraint is at a lateral balance. 

The step size for the first iteration is somewhat arbitrary, and     is used here. 

 

Figure 5.2.3.1-Iterations Locating the Interior of Physical Solution Space 
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6 RESULTS 
For the two presented solver methods, there are three keys areas of interest when considering their utility: 

 The accuracy of their results 

 Their reliability of convergence in varying conditions 

 The speed of convergence 

Each of these will be examined for both the LNR and stoichiometric solvers. To validate the solvers, we choose 

to compare their results directly to that of CEA for the dissociation of air-pressure nitrogen over the 

temperature range   [              ] . To ensure consistency between the results, the Glenn 

coefficients model has been use (see section 4.1.1), the specifics of which are available in appendix C. Though 

CEA has the facility to calculate equilibrium for prescribed pressure and temperature, the solvers in this report 

do not. As such, the results presented for this validation are found by numerically adjusting the solver input 

conditions until the desired temperature and pressure are achieved. 

The robustness of the solvers is measured heuristically, simply testing a wide variety of systems to see if the 

solver converges, diverges or is forced to halt due to a computational error, and the speed of convergence is 

examined for a simple system to demonstrate the characteristic behaviour of each solver. 

6.1 LNR ALGORITHM 

6.1.1 ACCURACY 

To validate the LNR results, we choose to simulate to a tolerance of 1 in       on correction variables and a 

tolerance of 1 in       for the pressure. As can be seen in figure 6.1.1.1, the data matches almost perfectly 

with that of CEA when the formulation of Gordon and McBride is adopted: 

 

Figure 6.1.1.1-Validation of Results for LNR Method 

In section 5.1.1, it is noted that Gordon and McBride make an unexplained adjustment to the calculation of the 

lagrangian minimum conditions, equivalent to making the transformation ‘
 

  
 

 

  
  ’. To more closely 

emulate their method, we have chosen to also make this adjustment in the validation. When this is not done, 

there is a small discrepancy between the results, with dissociation occurring ~100 K earlier (see figure 6.1.1.2). 
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Figure 6.1.1.2-Discrepenacy Induced by Potential Adjustment 

Interestingly, this discrepancy is similar in size and ‘shape’ to the one that is observed when the 

thermodynamic  curves for the species are restricted to the low temperature case of constant specific heat: 

 

Figure 6.1.1.3-Discrepancy Introduced by Simple Thermochemical Model 

It is of practical interest that simple thermodynamic models to not induce a catastrophic error, as this indicates 

that these low temperature models may act as a ‘cheap’ initial guess in systems with exceptionally complex or 

costly models. For this specific validation model, no significant deviation was observed between results based 

on the Glenn and Shomate models. 

6.1.2 CONVERGENCE 
As stated in section 5.1.2, we take an estimate of the error in the solver by the norm of the step size prior to 

applying a step-scaling factor  : 

   ∑   
 

 

 ∑    |  |
 

 

    | |  

When examining this for a typical system, we can see that, for a convergent system, the error follows a pattern 

of ‘startup’, in which the error does not progress downwards, and ‘final approach’, in which it decreases 

exponentially as the final result is refined. We can see these two branches for an example system in figure 

6.1.2.1. 
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Figure 6.1.2.1-Typical Convergence Behaviour for LNR Solver 

During final approach, the error decreases exponentially as iterations progress. As such, barring limits on 

machine precision and accuracy of the thermodynamic data, an arbitrarily tight tolerance may be achieved in 

linear time for any system. 

This behaviour is in keeping with the convergence curves observed by Zeleznik & Gordon and Gordon & 

McBride in their development of similar CEC solvers [1] [2]. Though their definition of error and the conditions 

being solved for is slightly different, the same general shape may be observed. 

 

Figure 6.1.2.2-CEA Convergence Curves 
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6.1.2.1  RELIABILITY OF CONVERGENCE 

By testing many systems at varying conditions, it was found that the LNR solver could be counted to reliably 

converge in all systems that did not involve excessive temperatures or densities. The limiting factor for 

convergence, provided a solution existed at all, is the occurring of overflows in the exponential and log natural 

functions used in the iteration process. In a physical sense, these conditions correspond to excessively high 

temperatures (e.g.      ) or densities (e.g.  
 

   ). In cases where this overflow condition was borderline, the 

loss of precision in the iterations prevents the solver from converging to within acceptable tolerances, but 

does not produce wild divergence. 

This reliability is, however, contingent on a sufficiently small step size. Setting     can, if beginning too far 

from the solution, cause the solver to ‘overshoot’ into a non-convergent region of the parameter space, or to 

oscillate about the solution when nearby. The second of these is of particular interest, as it commonly occurs 

when using a ‘nearby’ solution as a starting condition, such as when generating data for a range of internal 

energies. 

As the programmed algorithm was set to automatically scale back the step size as a first resort when 

encountering non-convergence, this does not affect the reliability of the LNR solver as a whole. Forcing the 

solver to recognise non-convergence and restart with a lower step size does, however, produce a significant 

impact on overall speed. 

6.1.2.2 EFFECT OF STEP SIZE 

Decreasing the step scaling improves the stability of solver, particularly in avoiding oscillatory behaviour about 

the optimum. This oscillation can contribute to the ‘startup’ iterations, and so a small step size can advance 

the onset of the final approach stage. However, these benefits come at the cost of decreasing the ‘speed’ of 

the final approach. 

 

Figure 6.1.2.2.1-Effect of Stepsize on Convergence 

Starting with a stepsize of       , and only decreasing after encountering non-convergence, was found to 

strike a good balance between these positives and negatives, though only when starting with no ‘nearby’ initial 

estimate. When a near-physical solution is available, it is more reasonable to begin at       to prevent 

small-scale oscillation, as a smaller number of iterations are required overall. 
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6.1.2.3 EFFECT OF INITIAL STATE 

Many sources in the literature state that there is a benefit to using a stoichiometric state as an initial seed for 

iterations [3] [11]. However, this was not seen in the actual performance of the algorithm: these physically 

constrained starting conditions were found to perform worse in all instances when compared to the crude 

‘averaged atom’ starting state. 

  
Averaged Atom Starting Condition Stoichiometric Starting Condition 

Figure 6.1.2.3.1-Convergence Curves for LNR Initial States 

Though the final approach is similar for both starting conditions, non-nearby stoichiometric starting conditions 

lead to a much longer startup time in the solver, with no apparent benefits to balance this out. 
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6.2 STOICHIOMETRIC ALGORITHM 

6.2.1 VALIDITY 
Unlike the LNR solver, the stoichiometric solver, at least when optimized via the Nelder-Mead method, 

performed extremely poorly when validated against CEA results. As shown in figure 6.2.1.1, the solver has a 

tendency to adhere to the boundaries of the solution space, failing to predict any dissociation at all. This 

failure to converge is discussed further in section 6.2.2. 

Figure 6.2.1.1- Validation of Results for Stoichiometric Method 

6.2.2 CONVERGENCE 
Testing the stoichiometric Nelder-Mead algorithm on many systems showed that it did correctly reproduce the 

results of the reliable LNR algorithm in some cases, but could not be relied on to do so in general. Take, for 

example, a system of the species: 

                 

At a high prescribed internal energy. Selecting ozone and water as the primary species, both solvers converge 

to the same point somewhere in the middle of the physical solution space: 

 
Figure 6.2.2.1-Free Energy Contours for Successfully Converging Stoichiometric System 

  



Hugh McDougall Prepared for the University of Queensland Bachelors of Engineering Honours Thesis  
Equilibrium Chemistry Module for the Eilmer4 Flow Simulation Code 

 

 33 

However, in a system where the solution lies near the boundary of the physical solution space, the 

stoichiometric algorithm will almost always fail to converge accurately. Consider the reaction of: 

            

At a sufficiently high energy for ozone to form. In this system, the solution lies on the boundary of the solution 

space, which causes the Nelder Mead algorithm to interact poorly with the discontinuous windowing function 

applied to avoid nonphysical solutions: 

 
Figure 6.2.2.1-Free Energy Contours for Unsuccessfully Converging Stoichiometric System 

Even in instances where the solution was not near-boundary, the stoichiometric algorithm could still not be 

relied upon to converge accurately, as can be seen in the nitrogen dissociation validation in section 6.2.1.  This 

issue with near-boundary solutions is not a trivial one: most complex systems should be expected to contain 

one or more species that are at or near zero concentration (see figure 6.2.2.3 for an example), making this 

algorithm wholly unsuited to this project. 

 
Figure 6.2.2.3-Equilibrium State of Many-Species System 

It is likely that these issues are a direct result of the crude implementation of the Nelder Mead algorithm, 

which performs best in a completely open parameter space.  A more complex approach, specifically 

formulated to deal with near-boundary solutions, may be more reliable, but is beyond the scope of this report. 
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7 Discussion 

7.1 COMPARISON OF METHODS 

Towards this project’s underlying goal of establishing a chemical equilibrium solver for use with Eilmer, the 

LNR method outperforms the stoichiometric solver in virtually every front. Summarizing the results of section 

six, it was found that the LNR solver is, reliably convergent except in systems of physical conditions beyond the 

scope of Eilmer’s application, rapidly converging, and is consistent in its results as compared to those of the 

existing CEA program. Additionally, the LNR method’s cost scaled with the number of atomic species only, 

allowing a large set of reacting chemicals to be simulated for little additional cost. 

Conversely, the stoichiometric approach, at least when paired with a ‘black box’ Nelder Mead module, is 

neither reliable nor accurate, tending to diverge almost completely in many practical systems. It is also much 

slower than the rapidly converging Newton Raphson scheme of the LNR method, taking several times longer to 

arrive at a stable (though often incorrect) solution for even simple systems. It is possible that a more complex 

stoichiometric scheme may be more reliable, but the poor cost scaling of stoichiometric algorithms make this 

of little practical interest. 

Solver Scheme 
 

LNR Stoichiometric  
Accuracy Against CEA Valid Invalid 
Speed Fast Slow 
Scaling Good Poor 
Robustness Good Poor 

Table 7.1-Summary of Method Comparison 

In regards to the initial iteration, the simple averaged atom method has appeared to be the most effective in 

simple systems, but there are no guarantees that this will hold for complex or high energy systems. In these 

instances, it may prove to be more effective to use a stoichiometric initial state, recovered either from the 

steepest descent method in section 5.1.3 or the iterative scheme recovered from the stoichiometric 

formulation in section 5.2.3. 

Reduced non-stoichiometric algorithms make up virtually all equilibrium solvers in the literature, and so it is 

not surprising that they outperform other competing methods. Similarly, the averaged atom method is similar 

to the method used by [1] in their CEA code, and so its performance is also in keeping with the literature. 
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7.2 FURTHER IMPROVEMENTS TO THE EQUILIBRIUM SOLVER 

Though the presented LNR algorithm is effective, there is still headway to be made in terms of improving its 

overall efficiency. Firstly, there exists some freedom in how the iteration equations of the LNR solver are 

formulated, namely in what correction variables are used and how the Newton Rapshon equations are defined 

before attempting to solve. It may be of interest to vary these and see under which conditions different 

formulations perform more effectively, perhaps even using a scheme that changes iteration scheme based on 

the system being solved or how close to the optimum the solver is. Two possible alterations to consider are: 

1. Not making the energy terms unitless in the Newton Rapshon equations 

2. Using linear correction variables on the temperature and/or species abundance 

Another area of possible improvement is in selecting the step scaling factor and identifying when a solution 

attempt is failing to converge. At present, a value near unity is chosen, and then decreased for each successive 

attempt until convergence is achieved or global non-convergence is established. During each optimization 

attempt, the scaling factor is held constant, and a single attempt is only abandoned when a fixed iteration limit 

(usually 100 iterations) is exceeded. Setting this iteration limit too high results in wasting iterations on 

oscillating iterations, and too low may cause slowly converging systems to be falsely labeled as non-

convergent. Selection of the step scaling factor presents a similar problem: too high and stability is harmed, 

too low and convergence is slowed to a crawl.  

To alleviate this issue, we propose a number of possible avenues of future interest: 

1. Refinement of the default values for maximum iteration and step scaling, and an automated process 

for making the best selection for a particular system and initial guess; 

2. Replacement of the maximum iteration limit with a more robust check that determines if the system 

is failing to converge; and 

3. A varied step scaling that ensures stability before increasing during the final approach, much as is 

done for the stoichiometric state algorithm in section 5.2.3 

Through one or more of these, the speed of the solver may be improved in general without requiring 

additional effort from those tasked with making use of the solver. Ideally, the solver should be as efficient as 

possible without requiring any ‘tuning’ from the user, relying entirely on internal processes, something that is 

not entirely achieved at present. 

It may also be of use to investigate a means of estimating a state nearby the optimum, possibly by a simplified 

thermodynamic model. Though it was found that stoichiometric initial states were not more efficient in 

general, beginning ‘near’ the optimum prevents divergence and decreases the number of iterations required 

to converge. In the context of CFD, the bulk of calculations will be performed with such a state provided by a 

previous optimized solution from a time or space adjacent cell, and the similar input conditions will allow the 

results of these cells to act as a good starting point for their neighbours. 

Another means of improving the existing LNR solver may be to introduce means of avoiding the ‘overflow’ 

error that produces divergence in high temperature/density systems. Though high density systems are well 

beyond the scope of the ideal gas assumptions that the the solver is contingent on, extremely high 

temperature schemes may still be of a practical interest. This will be particularly true if high temperature 

thermodynamic data is made available in the future. 
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7.3 ADDITIONAL AREAS OF INTEREST 

Though section 7.2 examines potential improvements specific to the LNR solver and the scope of this project, 

there is still room for future work, pertaining to Eilmer that lies beyond this scope. We identify two possible 

areas of interest: 

1. The development of a robust and efficient stoichiometric solver 

2. The extension of the LNR solver to account for non-ideal behavior, such as condensed phases and 

chemical interaction 

Though the stoichiometric solver was found to be completely ineffective in the implementation presented 

here, there is good reason to believe that CEC solvers of this family are not ineffective in general, as they are 

present to some degree in the literature [3]. Given the issues with the presented non-stoichiometric algorithm 

outlined in section 6.2, we suggest three possible points of improvement: 

1. Replacing the ‘black box’ Nelder Mead algorithm with a more efficient approach, e.g. steepest 

descent optimization 

2. Altering the formulation to use linearly independent parameter space vectors in place of the 

cumbersome separation of species method presented here 

3. Optimizing over a further restricted parameter space in cases of near-boundary solutions, so as to 

avoid the issues associated with the discontinuous windowing function 

Though the stoichiometric solvers scale less efficiently than the LNR method in general, they do provide an 

advantage in how broadly they may be applied.  If formulated correctly, a stoichiometric solver will be able to 

handle chemical interaction, non-ideal behavior and any number of other complicating factors, provided the 

system state is adequately defined. Should the scope of the CEC solver’s applications be expanded, such an 

algorithm, if formulated to be sufficiently reliable, may provide a powerful tool to validate against or fall back 

on. 

Towards the goal of handling non-ideal behavior, there exist a number of well established approaches in the 

literature. The approach of Gordon & McBride in their CEA analysis indicate that condensed phases (liquid or 

solid phases within the system mixture) may be accounted for by using linear correction variables instead of 

logarithmic for these species, thus  allowing them to go to be iterated to zero concentration. Though not 

discussed in detail here, there is also a host of approaches for non-ideal chemical interaction in the system’s 

state function, something that may need to be accounted for if, for example, ions were considered in addition 

to molecules and neutral atoms. 
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7.4 INTEGRATION & IMPLEMENTATION 

This project has focused on the problem of fixed energy/volume equilibrium solving as an isolated pursuit, 

entirely separated from its practical implementation in a finite volume CFD code. This section contains a brief 

discussion of how the methods outlined in this report may be applied in a practical and efficient way. Only the 

LNR method is considered for implementation, for the reasons outlined in section 7.1. 

As described previously, Eilmer’s equilibrium flow calculations model each finite volume as a closed system of 

set internal energy and volume, and some predetermined elemental composition. To model equilibrium flow 

requires equilibrium solutions to be found for many cells at each iteration or timestep in the simulation. We 

then require an implementation that minimizes the cost of finding these many solutions. 

In section 6, it is shown that beginning at a state ‘near’ the optimum solution decreases the number of 

iterations to converge. The simplest implementation, then, is to start each cell optimization with: 

 A prior result of a cell that is space-adjacent or from the current cell’s prior iteration; or 

 Some non-equilibrium or low temperature chemistry approximation 

Starting nearby, and using a small step scale to avoid oscillation, this will drastically decrease the cost as 

compared to starting with an averaged atom or ‘blind’ stoichiometric state for each cell. This has an advantage 

of working in any flow, even one in which the relative elemental composition of the flow is not constant. 

In cases where the relative elemental composition is constant, and only the density varies from cell to cell, 

there exists a second option. In these cases, changing density is analogous to changing the volume for fixed 

elemental abundance, and so the equilibrium state really only has two degrees of freedom: 

 ⃗⃗   ⃗⃗ (   ) 

As such, we may choose to calculate the equilibrium composition for many densities and energies prior to any 

flow calculations, and simply refer back to this when an equilibrium state is needed, by table lookup and/or 

interpolation, allowing many cells and iterations to be handled without needing to repeatedly call the solver. 
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8 Conclusion 
Two algorithms have been proposed for solving the fixed-internal energy and fixed volume chemical 

equilibrium condition of an arbitrary chemical system of well mixed ideal gasses, one following the reduced 

nonstoichiometric methodology established in the literature, and another stoichiometric method intended to  

make use of a Nelder Mead optimizer. Both have been prototyped, tested, validated against externally 

established results and compared to one another. To summarize: the “Lagrangian Newton Raphson” approach 

was found to be fast, robust and accurate, and to have a computational cost that scales well with both system 

complexity and required precision. By contrast, the stoichiometric approach was found to be slow and 

imprecise, in addition to being unwieldy and scaling poorly with the sort of complexity expected in Eilmer’s 

equilibrium flow calculations. 

The LNR algorithm consistently and continuously outperforms the stoichiometric algorithm by every 

meaningful measure, and so is recommended for integration into Eilmer, and for further refinement to 

improve its utility and efficiency. This result is in keeping with the literature; the LNR algorithm presented here 

is based entirely on the work of Zeleznik & Gordon [7] and Gordon & McBride [1], whose methods have been 

continuously refined and in consistent, uncontested use for the better part of a century. As such, it is not 

surprising to see that this approach outperforms any competitors. 
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APPENDIX A: EQUILIBRIUM SOLVER PROTOTYPE PYTHON CODE 
from __future__ import division 
from Database_Schomer import species,R_u 
from Simclass import * 
import numpy as np 
from squareup import * 
from scipy.optimize import root,    minimize,   bisect 
from math import log as mathlog 
 

''' 

This is the prototype solver for the eilmer chemical equilibrium 

module. This file contains the solver for both the stoichiometric 

and LNR methods, each of which is called by the 'solve' method. 

 

'Simclass.py' defines the species properties. 

 

Hugh McDougall, 1/6 2018 

''' 
 

ZG_SWITCH=True      #A switch to apply the mu/RT+=1 switch of the Z&G formulation 
 

class solver: 
    def __init__(self,sim): 
        ''' 
        A solver is created with a 'simulation' as a template 

        to read its physical properties from. These can be changed 

        at runtime. A simulation has set U, V and species abundances. 

        ''' 
 

        self.debug=False 
 

        self.U0 =sim.u          #Prescribed internal energy 
        self.V  =sim.V          #Prescribed volume 
 

        self.I=sim.N_spec       #The number of chemical species 
        self.J=sim.N_atom       #The number of atomic species 
         

        self.b      =np.zeros([sim.N_atom])     #Elemental abundance atom 
        self.C      =np.zeros([self.J,self.I])  #Elemental conservation matrix 
 

        #Seed conditions for solver 
        self.T0 =298 
        self.N0 =np.zeros([self.I])+(sum(self.b)/self.I) 
        self.n0 =np.zeros(self.I-self.J)+(sum(self.b)/self.I) 
        self.PI0=np.zeros([self.J]) 
 

        #Make Conservation matrices 
        for i,entry in zip( range(self.I),  sim.speclist): 
            for j,name in zip(range(self.J),sim.atomlist): 
                for atomname in entry[0].atom.keys(): 
                    if atomname==name: 
                        self.b[j]       +=entry[0].atom[atomname]*entry[1] 
                        self.C[j,i]      =entry[0].atom[atomname] 
 

        #Sort into primary and secondary species using squareup() 
        """ 
        This is the separation of species step. 

        From this point forward, all ordering of chemical species 

        is of the form N=[n_primary,n_secondary] 

 

        This step is only reversed in the output of solve() 

        """ 
        self.A, self.D, self.cutcols=squareup(self.C) 
        self.Ainv=np.linalg.inv(self.A) 
        self.sorter,self.unsorter=assembly_vectors(self.I,self.cutcols) 
 

        #split species list 
        self.specs    =(np.array(sim.speclist)[:,0])[self.sorter] 
 

        #Establish primary species boundaries 
        self.nmax=self.getnmax() 
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    #Sys State Evaluation Functions 
    #---------------------------------- 
    def getnmax(self): 
        ''' 
        Makes a rough estimate of the 'square' region that 

        the physical solution space lies within. 

         

        Takes no arguments. 

        Returns an array of primary species 

        ''' 
        nmax=np.zeros([self.I-self.J]) 
        for l in range(self.I-self.J): 
            for j in range(self.J): 
             

                nmax[l]=min([(self.b[j]/self.D[j,l]) for j in range(self.J) if 

self.D[j,l]!=0]) 
 

        return(nmax) 
 

    def resetseed(self): 
        ''' 
        Resets the solver's initial estimate for the solvers 

        by way of the averaged atom method. 

        Takes no arguments. 

        Acts directly on the solver variables. 

        ''' 
        self.N0=np.zeros([self.I])+sum(self.b)/self.I 
        self.T0=298 
        self.PI0=np.zeros([self.J]) 
        self.n0=self.N0[self.sorter][:self.I-self.J] #Read the primary species from current 

seed 
 

 

    #Sys State Evaluation Functions 
    #---------------------------------- 
    def sys_internalenergy(self,N,T): 
        ''' 
        Calculates the internal enegry for a set temperature 

        and species count. For use in temp_solve 

         

        Takes (sorted) complete species list and temperature. 

        Returns internal energy. 

        ''' 
        assert len(N)==len(self.specs), "Wrong count length in sys_internalenergy" 
 

        outU=0 
        for entry,n in zip(self.specs,N): 
            outU+=entry.u(T)*n 
        return(outU) 
 

    def sys_enthalpy(self,N,T): 
        ''' 
        Calculates the enthalpy for a set temperature and species count 

        For use in getting gibbs 

 

        Takes (sorted) complete species list and temperature. 

        Returns total enthalpy. 

        ''' 
        assert len(N)==len(self.specs), "Wrong count length in sys_enthalpy" 
 

        outH=0 
        for entry,n in zip(self.specs,N): 
            outH+=entry.h(T)*n 
        return(outH) 
 

    def sys_entropy(self,N,T): 
        ''' 
        Calculates the entropy for a set temperature and species count 

        For use in getting gibbs 

 

        Takes (sorted) complete species list and temperature. 

        Returns total entropy. 

        ''' 
        assert(min(N))>0,"min(N)<0 in entropy eval" 
        assert(T>0), "Negative temp in entropy eval" 
        outS=0 
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        #Perform Summation 
        for entry,n in zip(self.specs,N): 
            if n>0: 
                si  =   entry.s(T) 
                si +=   -R_u*mathlog(n*R_u*T/(self.V*101.3*10**3)) 
                outS+=n*si 
 

        return(outS) 
 

    def sys_gibbs(self,N,T): 
        ''' 
        Calculates the entropy for a set temperature and species count 

        For use in getting gibbs 

 

        Takes (sorted) complete species list and temperature. 

        Returns total gibb's free energy. 

        ''' 
 

        outG=self.U0+(T*sum(N)*R_u)-T*self.sys_entropy(N=N,T=T) 
        return(outG) 
 

    #Gibbs Solver Functions 
    #---------------------------------- 
    def temp_solve(self,N): 
        ''' 
        Uses a 1D rootfinder to get the temp for a known 

        species count and set internal energy. 

        'root' imported from scipy 

 

        Takes a sorted complete species list 

        Returns the temperature. 

        ''' 
         

        def f(T): 
            return(self.sys_internalenergy(N=N,T=T)-self.U0) 
        out=root(f  , x0=self.T0) 
 

        if float(out.x)<0: 
            print("WARNING! No valid temp solution found for N=",N) 
        return(float(out.x)) 
 

    def n_to_N(self,n): 
        ''' 
        Takes a primary species vector 'n' and sorts into secondary 

        ''' 
        ndash=np.dot(   self.Ainv,  (self.b-np.dot(self.D,n)    )) 
        N=np.hstack([n,ndash]) 
        return(N) 
 

    def check_physical(self,n=None,N=None): 
        ''' 
        Checks to see if a system state is physical or not 

         

        Takes either primary 'n' or complete species 'N' array 

        Returns as a boolean. 

        ''' 
 

        if type(N)==type(None): 
            N=self.n_to_N(n) 
         

        if min(N)<=0: 
            return(False) 
 

        if self.sys_internalenergy(N=N,T=0)>self.U0: 
            return(False) 
         

        return(True) 
 

    def genseed(self): 
        ''' 
        Randomly pings points in the in the n<nmax domain 

        until a physical solution is found 

 

        Takes no arguments 

        Returns an array of primary species 

        ''' 
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        maxits=1E5 
        noits=0 
        ntest=np.zeros([self.I-self.J]) 
 

        while self.check_physical(n=ntest)==False: 
                if noits<maxits: 
                    ntest=np.random.rand( len(ntest) ) * self.nmax 
                    noits+=1 
                else: 
                    print("WARNING!: Failed to find physical seed") 
                    return(None) 
         

        return(ntest) 
 

    def windowgibbs(self,n=None,N=None): 
        ''' 
        The potential that is fed into the nelder solver 

        Accepts a primary species vector, ensures a physical solution 

 

        Takes either primary 'n' or complete species 'N' array 

        Returns the gibb's function with a window applied. 

        ''' 
        if type(N)==type(None): 
            N=self.n_to_N(n) 
         

        if self.check_physical(N=N)==False: 
            return(1E100) 
        else: 
            T=self.temp_solve(N) 
            G=self.sys_gibbs(N=N,T=T) 
            return(G) 
 

    def LSD_step(self,Y,logN,alpha=1): 
        ''' 
        Performs the newton rapshon step to locate approach the laplace potential 

        minimum. 

 

        Takes array inputs in the form: 

            -logN=log|n| 

            -Y=[log|T|,pi] 

            -(optional) alpha=alpha 

 

        Outputs as Y and logN arrays. 

        ''' 
 

        #Read matrices to extract physical values 
        T   =np.exp(Y[0]) 
        N   =np.exp(logN)+1E-16 
 

        if self.debug: 
            print("logN:    ",logN) 
            print("N:   ",np.exp(logN)) 
 

        if self.debug: 
            print(N,T) 
         

        J=np.zeros([self.J+1,self.J+1]) 
        F=np.zeros([self.J+1]) 
        A=self.C[:,self.sorter] 
 

        B=np.dot(A,N) #Current  nodes 
 

        #J0 and F0 
        J[0,0]  =self.U0/R_u/T 
        F[0]    =self.U0/R_u/T 
        F[1:]   -=self.b 
 

        MU_RT   =np.zeros([self.I]) 
        K       =np.zeros([self.I,self.J+1]) 
        K[:,1:] +=A.T 
 

        #Summate over i 
        for i in range(self.I): 
             

            ui  =self.specs[i].u(T) 
            hi  =self.specs[i].h(T) 
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            ui_RT   =ui/R_u/T 
            hi_RT   =hi/R_u/T 
            mui_RT  =hi_RT-self.specs[i].s(T)/R_u+(logN[i]+mathlog(R_u*T/self.V/101.3/10**3)) 
 

            if ZG_SWITCH==True: 
                mui_RT+=1 
 

            cv_R    =self.specs[i].cp(T)/R_u-1 
 

            J[0,0]  +=N[i]*(cv_R-ui_RT*(2-hi_RT)) 
            F[0]    +=N[i]*ui_RT*(mui_RT-1) 
 

            MU_RT[i]=mui_RT 
            K[i,0]  =1-hi_RT 
 

            for row in range(1,self.J+1): 
                    for col in range(1,self.J+1): 
                        J[row,col]+=A[col-1,i]*A[row-1,i]*N[i] 
             

            for row in range(1,self.J+1): 
                J[row,0]+=A[row-1,i]*N[i]*(1-hi_RT) 
                F[row]  +=A[row-1,i]*N[i]*(1-mui_RT) 
                 

            for col in range(1,self.J+1): 
                J[0,col]+=-N[i]*ui_RT*A[col-1,i] 
 

        #Calculate Update 
        JINV=np.linalg.inv(J) 
        dY  =np.dot(JINV,F) 
        dlogN=-MU_RT-np.dot(K,dY) 
         

        #Get outputs 
        Yout    =np.zeros([self.J+1]) 
        Yout[0] =Y[0]+dY[0]*alpha 
        Yout[1:]+=dY[1:] 
 

        logNout=logN+dlogN*alpha 
 

        return(Yout,logNout) 
                 

    #Equilibrium Optimizers 
    #---------------------------------- 
    def nelder_optimizer(self,n0,tol=1E-10): 
        ''' 
        Solves the equilibrium concentrations by minimizing the 

        windowgibbs function. Called by solve(). 

 

        Takes arguments 

            -Initial primary species vector 'n0' 

            -Tolerance 'tol', passed to existing Eilmer solver. 

 

        Outputs are in the form of a primary species array 

        ''' 
         

        out=minimize(self.windowgibbs,x0=n0,method="nelder-mead",tol=tol) 
        return(out.x,out.fun) 
 

    def laplace_optimizer(self,Y0,logN0,tol=1E-10,maxits=1E5,alpha=0.9): 
        ''' 
        Solves the minimum of the laplace potential by itterating 

        the newton rapshon equation. Called by solve(). 

 

        Takes array inputs in the form: 

            -logN0=log|n| 

            -Y0=[log|T|,pi] 

        And optional inputs 

            -(optional) alpha=0.9 

            -(optional) maxits=1E5 

            -(optional) tol=1E-10 

             

        Outputs as Y and logN arrays. 

        ''' 
 

        stepsize=tol*2 
 

        #Set up initial conditions 
        Y   =Y0 
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        logN=logN0 
 

        itno=0 
        while stepsize>=tol: 
            assert itno<maxits, "Itteration Number exceeded in laplace solver" 
            itno+=1 
            Ystep,logNstep=self.LSD_step(Y=Y,logN=logN,alpha=alpha) 
            stepsize=min(min(abs(Ystep-Y)),min(abs(logNstep-logN))) 
 

            Y   =Ystep 
            logN=logNstep 
 

        return(Y,logN) 
         

    #Solver Wrapper 
    #---------------------------------- 
    def solve(self,method='nelder-mead',tol=1E-10,maxits=1E5,alpha=0.9): 
        ''' 
        The actual solver that uses a given method 

        to calculate the equilibrium conditions. 

 

        Called with solver method as a string: 

            method='nelder-mead' 

        or 

            method='LSD' 

 

        Takes optional inputs 

            -(optional) alpha=0.9 

            -(optional) maxits=1E5 

            -(optional) tol=1E-10 

 

        Returns a tuple of the form: 

            (N,T,P) 

        Where: 

            N   is an array of solution species abundances sorted in the order the species 

were added to the solver's parent sim 

            T is the solution temperature 

            P is the corresponding pressure. 

         

        ''' 
 

        assert method in ['nelder-mead','steepest-descent','LSD'], method+" is not a valid 

solver method" 
 

        #Check if using constrained method 
        constrained = method in ['nelder-mead','steepest-descent'] 
 

        #Get initial conds 
        if not constrained: 
            if min(self.N0)<=0: 
                self.N0=self.N0*0+sum(self.b)/self.I 
             

        self.n0=self.N0[self.sorter][:self.I-self.J] #Read the primary species from current 

seed 
         

        if constrained: 
            if self.check_physical(self.n0)==False: #If non physical, make a new one 
                print("Bad initial seed, making new") 
                self.n0=self.genseed() 
                self.N0=self.n_to_N(self.n0) 
                print("New Seed:",self.N0) 
 

        #Actual solver runtime 
        #--------------------- 
        if method=='nelder-mead': 
            #Get results from nelder mead method 
            outx,outf=self.nelder_optimizer(self.n0,tol=tol) 
 

            #Sort into meaningful information 
            outputN=self.n_to_N(outx) 
            outputT=self.temp_solve(outputN) 
            outputN=outputN[self.unsorter] 
             

        elif method=='steepest-descent': 
            print("Steepest Descent not yet implemented") 
            return(None) 
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        elif method=='LSD': 
            #Get initial conditions 
            Y0      =np.zeros([self.J+1]) 
            Y0[0]   =mathlog(self.T0) 
            Y0[1:]   +=self.PI0 
            logN0   =np.log(self.N0[self.sorter]) 
 

            try: 
                try: 
                    Y,logN  

=self.laplace_optimizer(Y0,logN0,tol=tol,maxits=maxits,alpha=alpha) 
                except: 
                    alpha=alpha 
                    while alpha>=0.01: 
                        try: 
                            print("Itterations failed to converge. Decreasing Step Scaling") 
                            alpha*=0.5 
                            Y,logN  

=self.laplace_optimizer(Y0,logN0,tol=tol,maxits=maxits,alpha=alpha) 
                            break 
                        except: 
                            continue 
                    assert alpha>=0.01, "Simulation failed to converge" 
            except: 
                print("Itterations failed to converge. Resetting Seed") 
                self.resetseed() 
                outputN,outputT,outputP=solve(self,method='LSD',tol=tol,maxits=maxits) 
                 

            #Sort into meaningful information 
            self.PI0=np.zeros([self.J])+Y[1:] 
            outputN=np.exp(logN) 
            outputT=np.exp(Y[0]) 
            outputN=outputN[self.unsorter] 
             

 

        outputP=sum(outputN*R_u*outputT/self.V) 
 

        self.N0=outputN 
        self.T0=outputT 
         

        return(outputN,outputT,outputP) 
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APPENDIX B: LNR EQUILIBRIUM SOLVER 
import std.stdio; 
import nm.bbla; 
import simclass; 
import specclass; 
import matrix_exp; 
import std.file; 
import std.math : isNaN, pow; 
 

double P0 = 101.3*1000; 
 

/* 

------------------- 

solver.d 

------------------- 

The solver model that uses the LNR method to calculate 

chemical equilibrium conditions for set internal energy and volume. 

 

Note that this code refers to the lagrangian newton rapshon (LNR) 

method as the lagrangian steepest descent (LSD) method. 

 

 -Hugh McDougall, 1/6/2018 

 

NOTES: 

 All methods are stored in the "solver" class.  

 

 At present, doesn't have a 'loading' process in the init function, 

 the input conditions and species must be defined manually. 

 

 All float variables are taken to be at the "double" precision level, 

 in line with the linear algebra module that's been made available in Eilmer 

*/ 
 

struct LSDstruc{ 
 /* 
 This is a structure to help store the 

 itterations in the LNR step method. 

 */ 
 Matrix Y; 
 Matrix logN; 
 bool converged; 
} 
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class solver{ 
 //List of variables stored within this class 
 //Element properties 
 double U0; //Total energy in volume element 
 double V; //Volume of element 
  

 bool DEBUG; 
  

 //Chemical abundances 
 int I;  //No. Species 
 int J;  //No. Elements  
 Matrix b; //Atomic counts, total. I length vector 
 Matrix C; //Atomic counts per  species. IxJ matrix 
  

 species[] specs; //A list of the chemical species 
  

 //The Initial Seed for input to the LSD  
 double T0; //Temperature 
 Matrix N0; //Species counts 
 Matrix PI0; //Lagrange multipliers 
  

  

 //__init__ function 
 this(){ 
  /* 
  Later on, this will be used to directly load a 'simclass' struc 

  */ 
   

  bool DEBUG; 
   

  //Element properties 
  this.U0 =U0; //Total energy in volume element 
  this.V =V;  //Volume of element 
   

  //Chemical abundances 
  this.I =I;  //No. Species 
  this.J =J;  //No. Elements  
  this.b =b;  //Atomic counts, total. I length vector 
  this.C =C;  //Atomic counts per  species. IxJ matrix 
   

  this.specs=specs; //A list of the chemical species 
   

  //The Initial Seed for input to the LSD  
  this.T0 =T0; //Temperature 
  this.N0 =N0; //Species counts 
  this.PI0=PI0; //Lagrange multipliers 
 } 
  

  

 //Gibbs Solver Functions 
 //---------------------------------- 
  

 /* 
 This section was mostly geared towards the nelder mead optimizer 

 and generating seeds for it. It might be useful for the LSD method as well, 

 but will require the complexity of the "separation of species" to also be built in 

  

 I might add this in another module, come to think of it. 

 */ 
  

 void resetseed(int noresets, int method=2,float tol=1E-2){ 
   if(method==1){ 
    this.N0 =zeros(this.I,1)+sum(this.b)/this.I/pow(10,noresets);  
    this.T0 =298; 
    this.PI0=zeros(this.J,1); 
   } 
   else if(method==2){ 
    writeln( 

"resetseed() being called with method 2, loop ",noresets); 
    resetseed(1, 1, tol); 
     

    Matrix Ni  = this.N0*1; 
    Matrix logNi  = Mlog(Ni); 
    double T  = this.T0; 
    double logT  = mathlog(T); 
    Matrix deltab  = zeros(this.J,1); 
    Matrix ui_RT  = zeros(this.I,1); 
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    double cv_R  = 0; 
    double dU_RT  = 0; 
    double P  = tol*2; 
    Matrix grad  = zeros(this.I+1,1); 
    Matrix dx  = zeros(this.I+1,1); 
     

    while(P>tol){ 
 

     grad  = zeros(this.I+1,1); 
     cv_R  = 0; 
     deltab  = dot(this.C,Ni)-this.b; 
      

     foreach(i;0..this.I){ 
      ui_RT[i,0] =this.specs[i].u(T)/R_u/T; 
      cv_R  +=this.specs[i].cv(T)/R_u; 
     } 
      

     dU_RT =vdot(Ni,ui_RT)-this.U0/R_u/T; 
     P  =vdot(deltab,deltab)+dU_RT*dU_RT; 
      

     foreach(i;0..this.I){ 
      foreach(j;0..this.J){ 
       grad[i+1,0]+=deltab[j,0]*this.C[j,i]; 
      } 
      grad[i+1,0]+=dU_RT*ui_RT[i,0]; 
      grad[i+1,0]*=Ni[i,0]; 
     } 
     grad[0,0]=dU_RT*(cv_R-dU_RT); 
      

     grad=grad*2; 
      

     dx=grad*-(P/vdot(grad,grad)); 
      

     foreach(i;0..this.I){ 
      logNi[i,0]+=dx[i+1,0]; 
     } 
     logT+=dx[0,0]; 
      

     T=mathexp(logT); 
     Ni=Mexp(logNi); 
    } 
     

   this.N0=Ni; 
   this.T0=T; 
   } 
 } 
    //Equilibrium Optimizers 
    //---------------------------------- 
  

 LSDstruc LSD_Step(LSDstruc prevstep){ 
  /* 
  Takes an input Y,PI in the form of an LSDstruc 

  Returns a step of a similar form. 

   

  'Alpha' is a variable step scaling, usually controlled in the solver() function 

  */ 
   

  LSDstruc outstep;  
 

        //Read matrices to extract physical values 
  Matrix Y =prevstep.Y; 
  Matrix logN =prevstep.logN; 
   

         double T =mathexp(Y[0,0]); 
  Matrix PI =zeros(this.J,1); 
  foreach(j; 0..this.J){ 
   PI[j,0]=Y[j+1,0]; 
  } 
   

        Matrix N =Mexp(logN); 
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  //Define step matrices 
        Matrix J=zeros(this.J+1,this.J+1); //Linearizer matrix to invert step 
       Matrix F=zeros(this.J+1,1);  //Function eval matrix 

         Matrix K=zeros(this.I,this.J+1); //Used to get delta-N's 
   

        Matrix JINV; 
         Matrix dY; 
         Matrix dlogN; 
 

  //Physical values 
         Matrix A=this.C; //Just kept short for consistency 
         Matrix B=dot(A,N); //Current  values of 'b' 
   

  //Comp Savers 
        Matrix MU_RT   =zeros(this.I,1); //These values show up a lot. 
 

        //J0 and F0 
        J[0,0]  =this.U0/R_u/T; 
        F[0,0]  =this.U0/R_u/T; 
  foreach(j; 0..this.J){ 
   F[j+1,0]-=this.b[j,0]; 
  } 
 

  foreach(i;0..this.I){ 
   foreach(j;0..this.J){ 
   K[i,j+1]=A[j,i]; 
   } 
  } 
 

   //Relevant thermo props 
  double ui; 
  double hi; 
  double si; 
   //Unitless thermo props 
  double ui_RT; 
  double hi_RT; 
  double mui_RT; 
  double cv_R; 
   

        //Summate over i 
        foreach(i; 0..this.I ){ 
    

   ui =this.specs[i].u(T); 
   hi =this.specs[i].h(T); 
   si =this.specs[i].s(T); 
    

            ui_RT   =ui/R_u/T; 
            hi_RT   =hi/R_u/T; 
            mui_RT  =hi_RT-si/R_u+(logN[i,0]+mathlog(R_u*T/this.V/P0)); 
            cv_R    =this.specs[i].cp(T)/R_u-1; 
 

            J[0,0]  +=N[i,0]*(cv_R-ui_RT*(2-hi_RT)); 
            F[0,0]  +=N[i,0]*ui_RT*(mui_RT-1); 
 

            MU_RT[i,0] =mui_RT; 
            K[i,0]   =1-hi_RT; 
 

            foreach(int row; 1..this.J+1 ){ 
                    foreach(int col; 1..this.J+1 ){ 
                        J[row,col]+=A[col-1,i]*A[row-1,i]*N[i,0]; 
     } 
   } 
             

            foreach(row; 1..this.J+1 ){ 
                J[row,0] +=A[row-1,i]*N[i,0]*(1-hi_RT); 
                F[row,0]  +=A[row-1,i]*N[i,0]*(1-mui_RT); 
   } 
                 

            foreach(col; 1..this.J+1 ){ 
                J[0,col]+=-N[i,0]*ui_RT*A[col-1,i]; 
   } 
  } 
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        //Calculate Update 
 

        JINV =inverse(J); 
        dY   =dot(JINV,F); 
        dlogN =-1*dot(K,dY); 
  foreach(i;0..this.I){ 
   dlogN[i,0]-=MU_RT[i,0]; 
  } 
         

        //Get outputs 
        Matrix Yout     =dY; 
        Yout[0,0] +=Y[0,0]; 
 

        Matrix logNout  =logN+dlogN; 
   

  outstep.Y=Yout; 
  outstep.logN=logNout; 
   

        return(outstep); 
 } 
  

 LSDstruc LSD_Optimizer(LSDstruc inputs,  

int maxits=100000,  

double tol=1E-10,  

double alpha=0.9,  

int step_dec_goal=5){ 
  /* 
  Solves the minimum of the laplace potential by itterating 

         the newton rapshon equation. 

         Outputs as LSDstruc. For internal use within the module,  

  use the solve() function in main runtime 

   

  inputs: 

   inputs: Initial inputs in the form of an LSDstruc 

   maxits: maximum number of LSD_Step itteratons before reset  

   tol: How small the error should be for convergence 

  */ 
   

  writeln("LSD_Optimizer being called with alpha=",alpha); 
  LSDstruc currit; 
  LSDstruc nextit; 
  LSDstruc deltait; 
   

  //Arbitrarily high 
  double stepsize=tol*2; 
  double old_stepsize; 
   

  //Get initial conditions 
  currit.Y =inputs.Y; 
  currit.logN =inputs.logN; 
  currit.converged=false; 
   

  int itno=0; 
  writeln("Beginning Itteration loop in LSD_optimizer"); 
  writeln("Input conditions are:"); 
  writeln("T: ",mathexp(currit.Y[0,0])); 
  writeln("N: ",Mexp(currit.logN)); 
   

  File debugfile = File("debugfile.txt","w+"); 
   

  bool errorraised=false; 
  int step_dec=0; 
  while(stepsize>=tol || step_dec<=step_dec_goal){ 
   writeln(itno," ",stepsize," ",stepsize<=tol); 
    

   itno++; 
 

   //Halting condition 
   if(itno>=maxits){ 
    printf("Maximum itterations exceeded. \n"); 
    currit.converged=false; 
    break; 
   } 
    

   //Get step from the LSD_Step function 
   try{nextit=this.LSD_Step(currit);} 
   catch{errorraised=true; break;} 
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   deltait.Y =nextit.Y - currit.Y; 
   deltait.logN =nextit.logN - currit.logN; 
       

   //Evaluate "size" of step 
   old_stepsize=stepsize; 
   stepsize=norm(abs( 
    vstack([ 
    deltait.Y, 
    deltait.logN] 
    ) 
   )); 
    

   if(isNaN(stepsize)){errorraised=true; break;} 
    

   if(old_stepsize>=stepsize || stepsize<tol){ 
    step_dec++; 
   } 
   else{ 
    step_dec=0; 
   } 
    

   //Update 
   currit.Y  =currit.Y + deltait.Y ; 
   currit.logN  =currit.logN + deltait.logN*alpha; 
    

   

   if(this.DEBUG){ 
    debugfile.writeln(itno,"\t",stepsize); 
     

   } 
  } 
   

  debugfile.close(); 
 

  //Protection against non-physical values 
  if(NaNin(currit.Y) || NaNin(currit.logN)){return(currit);} 
   

  if(itno<maxits && errorraised==false){currit.converged=true;} 
  return(currit); 
 }  
  

  

 //Solver Wrapper 
 //---------------------------------- 
  

 Matrix solve(double tol=1E-10, int maxits=100000, double alpha=0.9, int maxresets=10, 

bool updateseed=true){ 
  /* 
  The actual solver function: 

  -Updates the T0,N0,PI0 variables of the solver 

  -Returns matrix of the form (T,P,n0,n1...nI) 

  */ 
   

  LSDstruc solvetest;      //Stores the output 

of LSD_Optimizer, including a boolean tag to describe wether it converged or not 
  solvetest.converged=false; 
  Matrix phys_output = zeros(this.I+2,1); //Actual output variable 
  double alpha_i; 
  int noresets=0; 
   

  //If STILL not converged, try rejiggering the seed and go from the top 
  while(solvetest.converged==false && noresets<maxresets){    
   alpha_i=alpha; 
    

   //Run loop. If not converged, halve step size and try again 
   while(alpha_i>0.1 && solvetest.converged!=true){ 
    

    //Process seed values into init conditions 
    solvetest.Y    =zeros(this.J+1,1); 
    solvetest.Y[0,0]  +=mathlog(this.T0); 
    foreach(j;0..this.J){ 
     solvetest.Y[j+1,0] +=this.PI0[j,0]; 
    } 
     

    solvetest.logN =Mlog(this.N0); 
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    solvetest=LSD_Optimizer(solvetest, maxits, tol, alpha_i); 
    writeln(solvetest.converged); 
    if(solvetest.converged!=true){ 
     alpha_i*=0.5; 
     printf("Failed to converge, halving step size to %lf 

\n",alpha_i); 
    } 
   } 
    

   //If failed to converge, reset seed and retry 
   if(solvetest.converged!=true){ 
    if(noresets<maxresets){ 
     writeln("Still failed to converge. Resetting seed"); 
     resetseed(noresets); 
     noresets++; 
    } 
    else if(noresets==maxresets){ 
     writeln("Maximum number of resets exceeded"); 
     break; 
    } 
   } 
    

   //Final check to make sure converged point is physical 
   double solveT = mathexp(solvetest.Y[0,0]); 
   Matrix solveN0 = Mexp(solvetest.logN); 
    

  } 
   

  if(solvetest.converged){ 
   //Update seed conditions 
   writeln("Itterations complete \n"); 
   if(updateseed){ 
    this.T0 = mathexp(solvetest.Y[0,0]); 
    this.N0 = Mexp(solvetest.logN); 
    foreach(j;0..this.J){ 
     this.PI0[j,0]= solvetest.Y[j+1,0]; 
    } 
    writeln("Seed updated, returning values\n"); 
   } 
    

   phys_output[0,0] =this.T0; 
   phys_output[1,0] =this.T0*sum(this.N0)*R_u/this.V; 
   foreach(i;0..this.I){ 
    phys_output[i+2,0] =this.N0[i,0]; 
   } 
    

   writeln("Output formatted. Solver done\n"); 
  } 
  else{ 
   writeln("Simulation failed to converge"); 
  } 
  //Return useful information 
  return(phys_output); 
 } 
 

} 
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APPENDIX C: SHOMATE AND GLENN COEFFICIENTS FOR SIMULATED SPECIES 
Shomate Coefficients 

The following are the Shomate coefficients for the species simulated during model validation for the solvers. 

These are used in the Shomate equations, in which a species’ thermodynamic properties are defined as: 

  ( )               
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The coefficients used here are based acquired from the NIST web-book [18], a publically available resource. 

Species N 

Bracket Start 200 K 

Bracket End 500 K 

A 21.13581 

B -0.388842 

C 0.043545 

D 0.024685 

E -0.025678 

F 466.311 

G 178.8263 

H 472.6832 
 

Species N2 

Bracket Start 200 K 500 K 6000 K 

Bracket End 500 K 6000 K 20000 K 

A 28.98641 19.50583 35.51872 

B 1.853978 19.88705 1.128728 

C -9.647459 -8.598535 -0.196103 

D 16.63537 1.369784 0.014662 

E 0.000117 0.527601 -4.55376 

F -8.671914 -4.935202 -18.97091 

G 226.4168 212.39 224.981 

H 0 0 0 
 

 

Species N3 

Bracket Start 200 K 

Bracket End 500 K 

A 0 

B 29.099 

C 0 

D 0 

E 0 

F 0 

G 0 

H 0 
 

Species H2 

Bracket Start 200 K 

Bracket End 500 K 

A 29.099 

B 0 

C 0 

D 0 

E 0 

F 0 

G 165.9090475 

H 0 
 

Species H 

Bracket Start 200 K 

Bracket End  500 K 

A 20.785 

B 0 

C 0 

D 0 

E 0 

F 0 

G 139.8636054 

H 0 
 

 

Species O 

Bracket Start 200 K 

Bracket End 500 K 

A 20.785 

B 0 

C 0 

D 0 

E 0 

F 0 

G 186.2226054 

H 0 
 

Species O2 

Bracket Start 200 K 500 K 6000 K 

Bracket End 500 K 6000 K 20000 K 

A 0 500 2000 

B 31.32234 30.03235 20.91111 

C -20.23531 8.772972 10.72071 

D 57.86644 -3.988133 -2.020498 

E -36.50624 0.788313 0.146449 

F -0.007374 -0.741599 9.245722 

G -8.903471 -11.32468 5.337651 

H 246.7945 236.1663 237.6185 
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Species O3 

Bracket Start 200 K 1200 K 

Bracket End 1200 K 20000 K 

A 21.66157 57.81409 

B 79.86001 0.730941 

C -66.02603 -0.039253 

D 19.58363 0.00261 

E -0.079251 -3.560367 

F 132.9407 115.7717 

G 243.6406 294.5607 

H 142.674 142.674 
 

Species H2O 

Bracket Start 200 K 1700 K 

Bracket End 1700 K 20000 K 

A 30.092 41.96426 

B 6.832514 8.622053 

C 6.793435 -1.49978 

D -2.53448 0.098119 

E 0.082139 -11.15764 

F -250.881 -272.1797 

G 223.3967 219.7809 

H -241.8264 -241.8264 
 

 

Species H2O2 

Bracket Start 200 K 

Bracket End 20000 K 

A 34.25667 

B 55.18445 

C -35.15443 

D 9.08744 

E -0.422157 

F -149.9098 

G 257.0604 

H -136.1064 
 

Species H3N 

Bracket Start 200 K 1400 K 

Bracket End 1400 K 20000 K 

A 19.99563 52.02427 

B 49.77119 18.48801 

C -15.37599 -3.765128 

D 1.921168 0.248541 

E 0.189174 -12.45799 

F -53.30667 -85.53895 

G 203.8591 223.8022 

H -45.89806 -45.89806 
 

 

Species H4N2 

Bracket Start 200 K 2000 K 

Bracket End 2000 K 20000 K 

A 35.1824 121.401 

B 96.0526 4.81688 

C -40.5013 -0.763012 

D 6.66807 0.043232 

E -0.874233 -40.7865 

F 77.9915 -11.3811 

G 249.425 305.344 

H 95.3534 95.3534 
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Glenn Coefficients 

The following are the Glenn Coefficients for atomic and diatomic nitrogen, as were used to compare the 

results for nitrogen dissociation against those of CEA. These are used to define a species’ thermodynamic 

properties by the following equations: 
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The Glenn coefficients are publically available, and here have been sourced from “NASA Glenn Coefficients for 
Calculating Thermodynamic Properties of Individual Species”, NASA/TP—2002-211556 [17]. 

Species N 

Bracket Start 200 K 500 K 6000 K 

Bracket End 500 K 6000 K 20000 K 

a1 0 88765.0138 547518105 

a2 0 -107.12315 -310757.498 

a3 2.5 2.362188287 69.1678274 

a4 0 2.92E-04 -6.85E-03 

a5 0 -1.73E-07 3.83E-07 

a6 0 4.01E-11 -1.10E-11 

a7 0 -2.68E-15 1.28E-16 

b1 56104.6378 56973.5133 2550585.618 

b2 4.193905036 4.865231506 -584.8769753 

 

Species N 

Bracket Start 200 K 500 K 6000 K 

Bracket End 500 K 6000 K 20000 K 

a1 22103.71497 587712.406 831013916 

a2 -381.846182 -2239.249073 -642073.354 

a3 6.08273836 6.06694922 202.0264635 

a4 -0.008530914 -0.000613969 -0.03065092 

a5 1.38E-05 1.49E-07 2.49E-06 

a6 -9.63E-09 -1.92E-11 -9.71E-11 

a7 2.52E-12 1.06E-15 1.44E-15 

b1 710.846086 12832.10415 4938707.04 

b2 -10.76003744 -15.86640027 -1672.09974 

 


