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MAGNET ELASTICITY 
The attractive force between magnets lined end-to-end means that they have a measure of “elasticity”, 

keeping them “bound” together even when separated/extended under force: 

 

This elasticity allows the row of magnets to support a stable curved shape (right). 

In this document, we’ll make an attempt to answer to questions: 

1. How to we quantify this elasticity? 

2. What is the smallest radius of curvature a row of magnets can support? 

ELASTICITY OF A ROW OF MAGNETS 
Let’s start with the first question: what is the elasticity of a row of magnets? To describe this, we’ll define 

elasticity as being “the relative increase in length under an applied tension”: 

  
 

 

  

  
 

In the absence of electrical fields, we can ignore the complicated nature of magnets and treat them as simple 

non-induced dipoles, for which the axial dipole-dipole force scales with distance like: 

  
 

  
 

Where ‘r’ is the distance between the two dipoles. In regards to geometry, let the magnets have widths  , and 

separation ‘a’, such that the distance between two dipoles ‘n’ magnets apart is     [   ]: 

 

In this way, the total tension force (i.e. the force in one particular direction) on a given magnet is: 
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Now differentiating against ‘a’ to find how the force changes with magnet spacing: 
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At rest, the magnets have zero separation, i.e.    , which gives: 
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Of particular note is the case of    , in which the summation term goes to the limit 
  

  
. This gives the total 

derivative as: 

  

  
   

 

  
 
  

  
 

Now to use this to find elasticity. First remember that our definition is: 

  
 

 

  

  
 

We can use a change of variables by remembering that ‘a’ changes the total length L by: 

        

Such that we can say: 
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Leading to an overall elasticity expression of: 

   
  

   
  

 
 

A negative elasticity would be odd in normal materials mechanics, but makes sense in this context: the greater 

the separation between the magnets, the less they attract one another, and so the less restoring force they 

sustain. 
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MAGNET BENDING 
The negative elasticity means that we can’t use simple materials bending analogies to solve the question of the 

how tightly a row of magnets can bend. Instead, we’ll look at a simplified model of the geometry to get some 

insight about the problem. Consider a set of ‘N’ magnets of half-width ‘R’, aligned corner-to-corner in a circle 

of inner radius   : 

 
Simplified Model 

At perfect alignment, the system symmetry means that the forces will all be balanced. As such, we’ll instead 

define the system to be “stable” if it self-corrects a perturbation in the alignment of any one of the magnets, 

i.e. a small rotation   produces a restoring moment instead of a diverging one: 

   
   

   

Our model relies on two main simplifications: 

 The magnets can be treated as point dipoles at their geometric centers 

 The dipole-dipole forces decay with distance fast enough that we can ignore all but the closest 

magnets 

MOMENTS ACTING ON THE MAGNET 

In general, for a magnet of moment ‘m’ subject to dipole magnetic field ‘B’, the forces and moments acting on 

it are: 

 ⃗   ( ⃗⃗⃗   ⃗⃗) 

 ⃗⃗⃗  ( ⃗⃗⃗   ⃗⃗) 

If ‘R’ is the vector adjoining the dipole to its pivot point, this yields a total moment of: 

 ⃗⃗⃗   ⃗   ⃗⃗   ⃗⃗⃗  

For a point-dipole, the generated magnetic field is: 
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Where   is the vector adjoining the point of interest and the magnets position. 
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CALCULATING MOMENTS 

Recall that the total moment acting on the magnet is: 

 ⃗⃗⃗   ( ⃗⃗⃗   ⃗⃗)   ⃗⃗  ( ⃗⃗⃗   ⃗⃗) 

We’re after the total derivative of    against  , i.e: 

   
  

 
  

  

    
  

 
  

  

    
  

 

Notice that the positions that the pivoting magnet can take all follow: 
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Also that the magnetic moment of the pivoting magnet is normal to this: 
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The other two magnets, meanwhile, have positions and moments: 
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Over a sufficiently small angle change   , we can say that the dipole’s position changed by: 

            

Such that the derivative of interest is: 
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We’ll these two terms apparent independently. 
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FIRST TERM: MOMENT DUE TO MAGNET TORQUE 

We know the moment vector of the perturbed magnet changes in direction, and we can resolve the applied 

magnetic field from its neighbours into x and y components: 
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Such that the magnitude of the applied moment is: 
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Differentiating against : 
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Now applying at    , and using the fact that      at this angle: 
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SECOND TERM: MOMENT DUE TO MAGNET FORCE 

The second term, before differentiation, is: 

    ⃗⃗   ( ⃗⃗⃗   ⃗⃗) 

In which the terms are (padded to 3 dimensions to allow us to take the cross product) 
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This leads to: 
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For gradient: 
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Now taking the cross product’s magnitude (third term) 
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And now differentiating against  : 
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Applying at      and using 
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RESULT 

Combining the derivatives of our pure moment and force-moment, we get the much simpler expression: 
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If we can find the three terms (   
 

  
      

  

   
  ) then we can easily find the sign of the perturbation 

response. 

Recall that, from our geometry, our stability is defined: 

  

  
            

  

  
          

From the setup if the magnets, we have: 

     
   

  
   

   

   
     

This matches with our intuition about the system: 

 The first term describes the central magnet’s motivation to align parallel to the local magnet field 

 The second term describes how this local magnetic field changes direction away from the axis 

 The third term describes the direct axial attraction to the neighbouring magnets, and how this 

increases in strength as you get closer to them 

So there are two stabilizing influences and one destabilizing. Finding the critical inner radii, we find that it is: 

  

  
 
 
   
  

    
   

 

From this point forward, we’ll estimate the derivatives numerically rather than sticking with analytical 

solutions. 
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NUMERICAL SIMULATION 
At this stage, we choose to solve the restoring moment problem numerically. Recall that our geometric setup 

has two magnets, ‘L’ and ‘R’, with: 
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Where   
  

 
, the angle separating the magnets at rest. Each magnet produces a magnetic dipole-field: 

  ( ⃗)  
  
  
(
  ⃗(  ⃗⃗ ⃗⃗ ⃗   ⃗)

| | 
 
 ⃗⃗⃗ 

| | 
) 

And we’re interested in taking the field  ⃗⃗   ⃗⃗   ⃗⃗ , and finding when the restoring moment goes to zero: 
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I.e. to get the roots of the function: 
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The derivatives can be estimated by using finite difference methods: 
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Where we use a special step size proportional to the magnet width to avoid round-off error: 
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RESULTS 

 
Solving this numerically for many different 
setups (see appendix) we find that the 
minimum stable inner radius is directly 
proportional to the magnet radius (right) 
 
This makes sense: we know from 
dimensionless analysis that this stability should 
be a function of the ratio of inner radius and 
magnet radius, implying a direct 
proportionality, i.e.: 
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Min. Circle Radius vs Magnet Half-Width 

 

 
Unitless Circle Radius vs Magnet Number 

 
As for how this maximum stable ratio changes with 
the number of magnets, we find that it is described 
extremely well by an exponential relationship: 
 

 

  
       

Where: 
                     

 
Note that this doesn’t plateau to a constant value: the 
more magnets you have, the broader the circle has to 
be to support them.  

 
 
 
This only provides a locus of possible stable configurations, we’d like to 
get things down to a single minimum value of    for a particular magnet 
geometry. We can do this by considering the “thickness” of the magnets, 
which we’ll call ‘b’, to be related to the curvature of the circle as a whole: 
 

 

  
 
  

 
 
  

  
 

 
Combining this with our critical radius ratio equation, we get a more 
definite expression for the maximum circle curvature: 
 

      
    

  
  

 

 
Magnet Thickness & Curvature 
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APPENDIX: CODE 
from math import pi, cos, sin 

import numpy as np 

from scipy.optimize import fsolve, bisect 

 

''' 

magsim02.py 

 

Runs the numerical calculations for the  

bending magnet problem. 

 

    -Hugh McDougall, 2019 

''' 

 

def f(N,ri,R): 

    ''' 

    Calculates the restoring moment derivative, dM/dtheta 

    in arbitrary units for fixed set properties. 

     

    Inputs 

        N   int     Number of magnets in loop 

        ri  float   Inner radius of circle 

        R   float   Half-width/radius of magnets 

    ''' 

 

    #Magnet separation angle 

    thet=2*pi/N 

 

    #Magnet position vectors 

    r1=(R+ri)*np.array([-sin(thet),cos(thet)]) 

    r2=(R+ri)*np.array([0,1]) 

    r3=(R+ri)*np.array([sin(thet),cos(thet)]) 

 

    #Magnet separation vectors 

    r12=r2-r1 

    r32=r2-r3 

 

    #Finite difference steps 

    dx=.0001*R 

    dy=dx 

 

    #Magnet moment vectors 

    m1=np.array([cos(thet), sin(thet)]) 

    m3=np.array([cos(thet),-sin(thet)]) 

 

    #Magnetic field function 

    def B(r): 

        rL=(r-r1) 

        rR=(r-r3) 

 

        BL=3*np.dot(rL,m1)/np.linalg.norm(rL)**5 

        BL-=m1/np.linalg.norm(rL)**3 

 

        BR=3*np.dot(rR,m3)/np.linalg.norm(rR)**5 

        BR-=m3/np.linalg.norm(rR)**3 

 

        return(BL+BR) 

 

    #Calculate field and derivatives 

    Bx=B(r2)[0] 
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    Byx=(B(r2+np.array([dx,0]))+B(r2+np.array([-dx,0])))[1]/dx 

    Bxx=(B(r2+np.array([dx,0])) 

         -2*B(r2) 

         +B(r2+np.array([-dx,0])))[0]/dx**2 

 

    return(Bx+R*Byx-R**2*Bxx) 

 

#Test case 

out=f(1000,1,.1) 

 

#Plot results 

import matplotlib.pylab as plt 

 

#Finding/plotting stability contours 

N   =[32,64,128,256,512,1024,2048,10**5]    #Magnet counts to test 

rats=[]                                     #Stable ratios (output) 

I   =64                                     #No. inner radii to test 

 

Rin=np.linspace(0,1000,I+1)[1:] 

Rout=Rin*0 

 

for n in N: 

    for i in range(I): 

        rin=Rin[i] 

         

        #Get bisection boundaries 

        rout=rin 

        while f(n,rin,rout)>0: 

            rout/=2 

        g=lambda rout: f(n,rin,rout) 

         

        #Solve and output 

        rout=bisect(g,rout,2*rout) 

        Rout[i]=rout 

 

    #Plot and output results 

    plt.plot(Rin,Rout,label=str(n))  

    print(n) 

    rat=np.average(Rout/Rin) 

    rats.append(rat) 

 

print("Calcs done. Exctracting data") 

 

#Plot R vs ri 

plt.legend() 

plt.xlabel("Inner Radius") 

plt.ylabel("Magnet Radius") 

plt.tight_layout() 

 

#Plot ri/R vs N 

fig = plt.figure() 

ax = fig.add_subplot(1, 1, 1) 

ax.set_yscale('log') 

ax.set_xscale('log') 

plt.plot(N,rats) 

plt.xlabel("Number of magnets") 

plt.title("Magnet Radius / Inner Radius") 

plt.tight_layout() 

plt.show() 

 


